
系統識別號 
U00260709201114525400 
論文名稱(中文) 
寬頻濾波器、小型濾波器與雙頻阻抗轉換器的微波網路合成與分析

論文名稱(英文) 
Microwave Network Synthesis and Analysis of WideBand Filters, Compact Filters, and DualBand Impedance Transformers

校院名稱 
成功大學 
系所名稱(中) 
電機工程學系碩博士班 
系所名稱(英) 
Department of Electrical Engineering 
學年度 
99 
學期 
2 
出版年 
100 
研究生(中文) 
謝政憲 
研究生(英文) 
JengShien Hsieh 
學號 
n2891120 
學位類別 
博士 
語文別 
英文 
論文頁數 
95頁 
口試委員 
召集委員黃進芳 口試委員尤正祺 口試委員黃正亮 口試委員李文熙 指導教授蔡智明

中文關鍵字 
網路合成
寬頻濾波器

英文關鍵字 
Network Synthesis
WideBand Filters

學科別分類 

中文摘要 
寬頻濾波器在過去幾年裡引起了國內外學術界與工業界的許多興趣，也提出了許多實用的濾波器結構，其中多模諧振器濾波器結構可以達到很好的寬頻特性，不過其中對於雙諧振及三諧振模態步階阻抗諧振器來實現的微波寬頻濾波器，之後的演進與新發展往往著重在尋找修改與發明適用架構來達到截止帶傳輸零點或倍頻抑制的改善，對於此類寬頻濾波器與傳統平行耦合線帶通濾波器之間的等效特性比較少討論，所以設計流程往往僅止於分析多諧振模態步階阻抗諧振器本身，而沒有辦法將微波寬頻濾波器以完整公式或步驟合成出來，常見的例子在設計合成階段就把實做階段的電磁模擬與微調提早使用。
本論文整理歸納九大項探討的主題，以傳統微波網路合成與分析的手法來研究，將有助於釐清某些濾波器設計方法不盡完整之處，本論文藉由完整合成多諧振模態步階阻抗諧振器架構的寬頻濾波器來討論冗餘式以及非冗餘式的設計，近似解合成方法和精準的合成方法的特點也以實例完整地比較。
本論文又進一步探討另一類小型濾波器的合成理論，藉由引進Z轉換來合成特殊的轉移函數，透過微波網路合成與分析的方法，某些傳統上稱為慢波架構的濾波器其小型化的機制也就可以完整地解釋，本論文的實例為六個組成元件三階特性的負載殘帶多諧振模態諧振器小型濾波器。
除了以Richards’ theorem為運算基礎的數值解法，某些簡化的網路合成問題已經有解析公式，本論文也以雙頻阻抗轉換器為實例進行了詳細的比較與討論。

英文摘要 
Wideband filter synthesis has been of great interest both in academy and industry. Many novel filter structures have been suggested. Multiplemode steppedimpedance resonator filter structure is one class which can achieve wideband characteristics. In literature, filters based on dualmode and triplemode resonators keep evolving on structure modifications, mainly for the performance improvements such as the introduction of extra stopband transmission zero and the extension of harmonic suppression. The similarity of these wideband designs with conventional parallel coupledline filters is not studied. They are designed by analyzing the multimode resonator structure, then stepping into filter implementation by computer optimization. That is, complete synthesis procedures and design equations are not developed.
In this thesis the observed designing and analyzing ambiguities or myths are classified into nine topics. By the classic network synthesis and analysis approach, those incomplete filter design procedures are clarified. Completed design equations and synthesis procedures are developed for the wideband multimode steppedimpedance resonator filters. Redundant and nonredundant designs are discussed. Features of both the approximate method and exact synthesis method are comprehensive compared with design examples.
The network synthesis procedure is extended to one class of compact stubloaded multimode resonator filters. With the help of Zplane techniques, approximation function is rigorously synthesized. The “slowwave mechanism” or “slowwave filter structure” is well explained by the proposed network synthesis approach. Design example of a sixelement thirdorder stubloaded multimode resonator filter is given to justify the method.
In additional to the numerical solution based on Richards’ theorem, for certain simplified network synthesis problems, there exist analytic solutions. In this thesis detailed comparisons and discussions are given by examples of dualband impedance transformers.

論文目次 
Chapter 1 Introduction 1
11 Conventional Parallel CoupledLine Filters 1
12 MultiMode Structure Analysis 7
13 Outline of the Thesis 11
Chapter 2 Synthesis of WideBand Filters 14
21 Redundant Synthesis (Scheme II) of Filters with DualMode Resonators 14
211 Synthesis Procedure 15
212 Design Example 22
22 NonRedundant Synthesis (Scheme IV) of Filters with DualMode Resonators 26
221 Synthesis Procedure 26
222 Design Example 30
23 Comparisons of NonRedundant Synthesis of Filters with Triple Mode Resonators 36
231 Scheme IV Synthesis Procedure 36
232 Scheme VI Synthesis Procedure 46
24 Exact and NonRedundant Synthesis of Filters with TripleMode Resonators53
241 Richards’ Theorem 53
242 Scheme V Synthesis Procedure 55
Chapter 3 Synthesis of Compact Filters 60
31 SlowWave Mechanism 61
32 Exact Synthesis of ThirdOrder Filter with Stubloaded Resonators 64
321 Synthesis Procedure 65
322 Implementation example 69
33 Fundamental Prototypes 71
Chapter 4 Synthesis of DualBand Impedance Transformers 74
41 Analytic Solution to Exact Synthesis 75
42 ShortStep DualBand Impedance Transformers 78
43 A BandwidthEnhanced DualBand Impedance Transformer in Three Sections 79
Chapter 5 Conclusions 82
51 Approximation Problem Revisited 82
52 Summary and Future Works 86
References 88

參考文獻 
[1.1] S. B. Cohn, “Parallelcoupled transmissionlineresonator filters,” IRE Trans. Microwave Theory Tech., vol. MTT6, pp. 223231, April 1958.
[1.2] E. M. T. Jones and J. T. Bolljahn, “Coupledstriptransmissionline filters and directional couplers,” IRE Trans. Microwave Theory Tech., vol. MTT4, pp. 7581, April 1956.
[1.3] H. Ozaki and J. Ishii, “Synthesis of a class of stripline filters,” IRE Trans. Circuit Theory, vol. 5, pp. 104109, June 1958.
[1.4] G. L. Matthaei, “Design of wideband (and narrowband) bandpass microwave filters on the insertion loss basis,” IRE Trans. Microwave Theory Tech., vol. MTT8, pp. 580593, Nov. 1960.
[1.5] P. I. Richards, “Resistortransmissionline circuits,” Proc. IRE, vol. 36, pp. 217220, Feb. 1948.
[1.6] A. Matsumoto (editor), Microwave Filters and Circuits Contributions from Japan. Supplement 1 to Advances in Microwaves (general editor, L. Young) Academic Press, New York, 1970.
[1.7] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, ImpedanceMatching Network, and Coupling Structures. McGrawHill, New York, 1964.
[1.8] Z. C. Hao and J. S. Hong, “Ultrawideband filter technologies,” IEEE Microwave Magazine, vol. 11, no. 4, pp.5668, June 2010.
[1.9] S. Sun and L. Zhu, “Multimoderesonatorbased bandpass filters,” IEEE Microwave Magazine, Vol. 10, No. 2, pp.8898, April 2009.
[1.10] E. M. T. Jones, “Synthesis of wideband microwave filters to have prescribed insertion loss,” 1956 IRE Convention Record, pt. 5, pp. 119128.
[1.11] R. J. Wenzel, “Exact design of TEM microwave networks using quarterwave lines,” IEEE Trans. Microwave Theory Tech., vol. MTT12, no. 1, pp. 94111, Jan. 1964.
[1.12] M. C. Horton and R. J. Wenzel, “General theory and design of optimum quarterwave TEM filters,” IEEE Trans. Microwave Theory Tech., vol. MTT13, no. 5, pp. 316327, May 1965.
[1.13] E. G. Cristal, “New design equations for a class of microwave filters,” IEEE Trans. Microwave Theory Tech., vol. MTT19, no. 5, pp. 486490, May 1971.
[1.14] P. A. Kirton and K. K. Pang, “Extending the realizable bandwidth of edgecoupled stripline filters,” IEEE Trans. Microwave Theory Tech., vol. MTT25, no. 8, pp. 672676, Aug. 1977.
[1.15] B. J. Minnis, “Printed circuit coupledline filters for bandwidth up to and greater than an octave,” IEEE Trans. Microwave Theory Tech., vol. MTT29, no. 3, pp. 215222, March 1981.
[1.16] S. Y. Yang, “Broadband Microwave Filter Design Using Multimode Resonators,” Thesis for M. S., Dept. Elec. Engr., National Cheng Kung University, Tainan, Taiwan, July 2009.
[1.17] G. C. Temes and S. K. Mitra (eds.), Modern Filter Theory and Design. Wiley, New York, 1973.
[1.18] J. A. G. Malherbe, Microwave Transmission Line Filters. Dedham, Mass: Artech house, 1979.
[1.19] W. A. Davis, Microwave Semiconductor Circuit design, Van Nostrand Reinhold, 1984.
[1.20] R. Levy and S. B. Cohn, “A history of microwave filter research, design, and development,” IEEE Trans. Microwave Theory Tech., vol. MTT32, no. 9, pp. 10551067, Sep. 1984.
[1.21] P. A. Rizzi, Microwave Engineering Passive Circuits, PrenticeHall, 1988.
[1.22] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, ImpedanceMatching Network, and Coupling Structures. McGrawHill, New York, 1964, Chap. 2, pp. 1825.
[1.23] L. Zhu, W. Menzel, K. Wu, and F. Boegelsack, “Theoretical characterization and experimental verification of a novel compact broadband microstrip bandpass filter,” Proceedings of AsiaPacific Microwave Conf., Taipei, Taiwan, R.O.C., pp. 625628, 2001.
[2.1] L. Zhu, H. Bu, and K. Wu, “Aperture compensation technique for innovative design of ultrabroadband microstrip bandpass filter,” IEEE MTTS Int. Microw. Symp. Dig., pp.315318, 2000.
[2.2] J. T. Kuo and E. Shih, “Wideband bandpass filter design with threeline microstrip structure,” Proc. Inst. Elect. Eng., vol. 149, no. 516, pp. 243247, Oct./Dec. 2002.
[2.3] L. Zhu, W. Menzel, K. Wu, and F. Boegelsack, “Theoretical characterization and experimental verification of a novel compact broadband microstrip bandpass filter,” Proceedings of AsiaPacific Microwave Conf., Taipei, Taiwan, R.O.C., pp. 625628, 2001.
[2.4] Y. C. Chiou, J. T. Kuo and E. Cheng “Broadband quasiChebyshev bandpass filters with multimode steppedimpedance resonators (SIRs),” IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 33523358, Aug. 2006.
[2.5] G. L. Matthaei, “Design of wideband (and narrowband) bandpass microwave filters on the insertion loss basis,” IRE Trans. Microwave Theory Tech., vol. MTT8, pp. 580593, Nov. 1960.
[2.6] R. E. Collin, Foundations For Microwave Engineering, McGrawHill, Inc., 1992, Chap. 6, pp. 427432.
[2.7] S. B. Cohn, “Parallelcoupled transmissionlineresonator filters,” IRE Trans. Microwave Theory Tech., vol. MTT6, pp. 223231, April 1958.
[2.8] M. C. Horton and R. J. Wenzel, “General theory and design of optimum quarterwave TEM filters,” IEEE Trans. Microwave Theory Tech., vol. MTT13, no. 5, pp. 316327, May 1965.
[2.9] E. G. Cristal, “New design equations for a class of microwave filters,” IEEE Trans. Microwave Theory Tech., vol. MTT19, no. 5, pp. 486490, May 1971.
[2.10] P. A. Kirton and K. K. Pang, “Extending the realizable bandwidth of edgecoupled stripline filters,” IEEE Trans. Microwave Theory Tech., vol. MTT25, no. 8, pp. 672676, Aug. 1977.
[2.11] B. J. Minnis, “Printed circuit coupledline filters for bandwidth up to and greater than an octave,” IEEE Trans. Microwave Theory Tech., vol. MTT29, no. 3, pp. 215222, March 1981.
[2.12] C. M. Tsai and H. M. Lee, “Improved design equations of the tappedline structure for coupledline filters,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 244246, April 2007.
[2.13] P. I. Richards, “A special class of functions with positive real part in a halfplane,” Duke Math. J., vol. 14, pp. 777786, Sep. 1947.
[2.14] R. Bott and R. J. Duffin, “Impedance synthesis without use of transformers,” J. Appl. Phys. , vol. 20, pp. 816, Aug. 1949.
[2.15] P. I. Richards, “Resistortransmissionline circuits,” Proc. IRE, vol. 36, pp. 217220, Feb. 1948.
[2.16] H. Ozaki and J. Ishii, “Synthesis of a class of stripline filters,” IRE Trans. Circuit Theory, vol. 5, pp. 104109, June 1958.
[2.17] H. J. Carlin and W. Kohler, “Direct synthesis of bandpass transmission line structures,” IEEE Trans. Microwave Theory Tech., vol. MTT13, no. 5, pp. 283297, May 1965.
[2.18] E. G. Cristal: Microwave Filters, in G. C. Temes and S. K. Mitra (eds.), Modern Filter Theory and Design. Wiley, New York, 1973, Chap. 7.
[2.19] J. A. G. Malherbe, Microwave Transmission Line Filters. Dedham, Mass: Artech house, 1979, Chap. 6.
[2.20] W. A. Davis, Microwave Semiconductor Circuit design, Van Nostrand Reinhold, 1984, Chap. 3.
[2.21] B. J. Minnis, Designing Microwave Circuits by Exact Synthesis, Artech House, 1996.
[3.1] L. Zhu and W. Menzel, “Compact microstrip bandpass filter with two transmission zeros using a stubtapped halfwavelength line resonator,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 1, pp. 1618, Jan. 2003.
[3.2] T. H. Duong and I. S. Kim, “Steeply sloped UWB bandpass filter based on stubloaded resonator,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 8, pp. 441443, Aug. 2010.
[3.3] R. Li and L. Zhu, “Compact UWB bandpass filter using stubloaded multiplemode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 1, pp. 4042, Jan. 2007.
[3.4] K. Ma, K. C. B. Liang, R. M. Jayasuriya, and K. S. Yeo, “A wideband and high rejection multimode bandpass filter using stub perturbation,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 2426 , Jan. 2009.
[3.5] H. M. Lee and C. M. Tsai, “Dualband filter design with flexible passband frequency and bandwidth selections,” IEEE Trans. Microw. Theory Tech., vol. MTT55, no. 5, pp. 10021009, May 2007.
[3.6] B. J. Minnis, Designing Microwave Circuits by Exact Synthesis, Artech House, 1996, Chap. 2, pp. 5368.
[3.7] R. J. Wenzel, “Synthesis of combline and capacitively loaded interdigital bandpass filters of arbitrary bandwidth,” IEEE Trans. Microw. Theory Tech., vol. MTT19, no. 8, pp. 678686, Aug. 1971.
[3.8] H. J. Orchard and G. C. Temes, “Filter design using transformed variables,” IEEE Trans. Circuit Theory, vol. CT15, no. 4, pp. 385408, Dec. 1968.
[3.9] W. M. Fathelbab and M. B. Steer, “Parallelcoupled line filters with enhanced stopband performances,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 37743781, Dec. 2005.
[3.10] J. A. G. Malherbe, Microwave Transmission Line Filters. Dedham, Mass: Artech house, 1979, Chap. 2, pp. 58.
[4.1] Y. L. Chow and K. L. Wan, “A transformer of onethird wavelength in two sectionsfor a frequency and its first harmonic,” IEEE Microw. Wireless Comp. Lett., vol. 12, no. 1, pp. 2223, Jan. 2002.
[4.2] M. C. Horton and R. J. Wenzel, “General theory and design of optimum quarterwave TEM filters,” IEEE Trans. Microwave Theory Tech., vol. MTT13, no. 5, pp. 316327, May 1965.
[4.3] C. Monzon, “A small dualfrequency transformer in two sections,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 11571161, April 2003.
[4.4] S. J. Orfanidis, “A twosection dualband Chebyshev impedance transformer,” IEEE Microw. Wireless Comp. Lett., vol. 13, no. 9, pp. 382384, Sep. 2003.
[4.5] G. Castaldi, “An exact synthesis method for dualband Chebyshev impedance transformers,” Prog. Electromagn. Res., pp. 305319, 2008.
[4.6] C. M. Tsai, C. C. Tsai, and S. Y. Lee, “Nonsynchronous alternating impedance transformers,” in Proc. AsiaPacific Microwave Conf., Dec. 2001.
[4.7] R. Levy and J. Helszajn, “Specific equations for one and two section quarterwave matching networks for stubresistor loads,” IEEE Trans. Microwave Theory Tech., vol. MTT30, no. 1, pp. 5563, Jan. 1982.
[4.8] B. J. Minnis, Designing Microwave Circuits by Exact Synthesis, Artech House, 1996, Chap. 4, pp. 222234.
[4.9] P. W. Van Der Walt, “Shortstepstub Chebyshev impedance transformers,” IEEE Trans. Microwave Theory Tech., vol. MTT34, no. 8, pp. 863868, Aug. 1986.
[4.10] G. L. Matthaei, “Shortstep Chebyshev impedance transformers,” IEEE Trans. Microwave Theory Tech., vol. MTT14, no. 8, pp. 372383, Aug. 1966.
[5.1] G. C. Temes and J. W. La Patra, Introduction to Circuit Synthesis and Design., McGrawHill, New York, 1977.
[5.2] G. Szentirmai (editor), ComputerAided Filter Design. IEEE Press, New York, 1973.
[5.3] L. Fraiture and J. Neirynck, “Optimum Ellipticfunction filters for distributed constant systems,” IEEE Trans. Microwave Theory Tech., vol. MTT15, no. 8, pp. 482483, Aug. 1967.
[5.4] D. C. Chang and C. W. Hsue, “Design and implementation of filters using transfer functions in the Z domain,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 5, pp. 979985, May 2001.
[5.5] K. S. Chin, Y. C. Chiou, and J. T. Kuo, “New Ssynthesis of parallelcoupled line bandpass filters with Chebyshev responses,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 7, pp. 15161523, July 2008.
[5.6] C. P. Chen, Z. Ma, and T. Anada, “Synthesis of ultrawideband bandpass filter employing parallel coupled steppedimpedance resonators,” IET Microwaves, Antennas and Propagation, vol. 2, no. 8, pp. 766772, Dec. 2008.
[5.7] S. Sun and L. Zhu, “Improved formulas for synthesizing multiplemode resonatorbased UWB bandpass filters” in Proc. EuMC, pp. 299302, Sep. 2009.
[5.8] R. Li, S. Sun, and L. Zhu, “Synthesis design of ultrawideband bandpass filters with composite series and shunt stubs,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 3, pp. 684692, March 2009.
[5.9] M. C. Horton and R. J. Wenzel, “General theory and design of optimum quarterwave TEM filters,” IEEE Trans. Microwave Theory Tech., vol. MTT13, no. 5, pp. 316327, May 1965.
[5.10] K. Liu, R. C. Frye, and B. Ahn, “High rejection BPF for WiMAX applications from Silicon Integrated Passive Device technology,” in IEEE MTTS Int. Dig., June 2010, pp. 13641367.
[5.11] W. G. E. Dine, H. Ezzeddine, S. Bila, and S. Verdeyme, “Three approaches for the realization of a Chebyshev crosscoupled UWB filter,” in IEEE MTTS Int. Dig., June 2010, pp. 13601363.
[5.12] T. Ishizaki, M. Fujita, H. Kagata, T. Uwano, and H. Miyake,, “A very small dielectric planar filter for portable telephones,” IEEE Trans. Microwave Theory Tech., vol. 42, no. 11, pp. 20172022, Nov. 1994.
[5.13] M. Tamura, T. Ishizaki, and M. Höft, “Design and analysis of vertical split ring resonator and its application to unbalancedbalanced filter,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 1, pp. 157164, Jan. 2010.
[5.14] R. Li, T. G. Lim, S. W. Ho, Y. Z. Xiong, and D. Pinjala, “Design of wideband bandpass filters using SiBCB technology for millimeterwave applications,” in Proceedings 60th Elect. Compon. Tech. Conf. (ECTC), 2010, pp. 515519.
[5.15] O. P. Gupta and R. J. Wenzel, “Design tables for a class of optimum microwave bandstop filters (correspondence),” IEEE Trans. Microwave Theory Tech., vol. MTT18, no. 7, pp. 402404, July 1970.
[5.16] J. C. Lu, C. C. Lin and C. Y. Chang, “Exact synthesis and implementation of new highorder wideband Marchand baluns,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 1, pp. 8086, Jan. 2011.
[5.17] W. M. Fathelbab and M. B. Steer, “New classes of miniaturized planar Marchand baluns,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 12111220, April 2005.
[5.18] W. M. Fathelbab and M. B. Steer, “Parallelcoupled line filters with enhanced stopband performances,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 37743781, Dec. 2005.

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20211231起公開。同意授權校外瀏覽/列印電子全文服務，於20211231起公開。 


