進階搜尋


下載電子全文  
系統識別號 U0026-0708202023272500
論文名稱(中文) 中空螺釘搭配鋼線於髕骨骨折之生物力學分析
論文名稱(英文) Biomechanics of Cannulated Screw with Anterior Wire in Fixing Transverse Patellar Fracture
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 城致軒
研究生(英文) Chih-Hsien Chen
學號 P88991131
學位類別 博士
語文別 英文
論文頁數 84頁
口試委員 指導教授-張志涵
口試委員-葉明龍
口試委員-楊岱樺
口試委員-李佩淵
口試委員-蘇國誌
口試委員-陳彥年
中文關鍵字 髕骨骨折  張力帶  螺釘  鋼線  有限元素法 
英文關鍵字 patellar fracture  tension band  cannulated screw  anterior wire  finite element method 
學科別分類
中文摘要 髕骨骨折常肇因於高速碰撞之意外事故,如運動傷害或是交通意外。對於嚴重的骨折需要透過手術固定以回復膝關節之正常功能。目前最常見之手術治療方式是以鋼線搭配鋼針或是中空螺釘來進行固定,藉由金屬植入物與髕骨前表面之鋼線來建構張力帶,抵抗來自於股四頭肌拉力與股骨髁合併作用所產生之扭矩。目前文獻上指出以部分螺紋之中空螺釘搭配鋼線構築之張力帶,可以建構比傳統鋼針搭配鋼線更為穩固之結構。但是,使用鋼線構築張力帶術式,需要切開髕骨前方軟組織才能進行鋼線之纏繞,因此傷口比較大;反之,若是僅使用螺釘進行固定,則可以使用微創的方式來進行手術,大幅縮小傷口,同時也可以減少術後的疼痛感,加快術後復健治療的腳步。但是,只有使用螺釘而沒有使用鋼線加強之方式,其結構穩定度會比較弱。目前骨科手術會可使用埋頭加壓螺釘或是全螺紋的中空螺釘來增加對於骨折固定的能力,但是將埋頭加壓螺釘或是全螺紋的中空螺釘用在髕骨骨折固定的研究則相當少。因此,為了有效提升對髕骨骨折固定之穩定度,同時減少使用鋼線造成的相關手術創傷(免去髕骨前方之傷口),以達到微創且兼具穩定目的,本研究分析比較在使用中空螺釘固定髕骨骨折之術式中,有無加上鋼線纏繞對於骨折固定之差異,考量因素還包括不同螺釘深淺位置與螺紋型態,包括部分螺紋、全螺紋以及埋頭加壓螺釘,比較基準為傳統之張力帶固定法,以期找出最佳之固定器材與配置,做為臨床醫師在施術時之參考依據。
本研究建立一完整之膝關節實體模型,包含股骨末端、脛骨近端以及髕骨,將建立好的模型導入有限元分析軟體(ANSYS Workbench 2020 R1)來進行網格化與後續的計算分析,並使用彈簧元素來模擬髕骨韌帶。分析包括不同螺釘深淺位置(與髕骨前表面的距離),深度5 mm 和10 mm,以及螺紋型態,包括埋頭加壓螺釘、全螺紋以及半螺紋中空螺釘等三種不同之螺紋型態,以及有無搭配不銹鋼線所構築之張力帶,在受到一模擬股四頭肌拉力之力學反應。因為在沒有使用鋼線的情況下,結構強度較低,無法承受高負載,所以有使用鋼線之模型施加800 N之拉力,而沒有鋼線之模型則將拉力降低至400 N。本研究考慮兩種不同之膝關節彎曲角度,包括膝關節完全伸直與彎曲45度時,髕骨受力之反應。比較指標包括髕骨位移量、骨折間隙之變化、接觸面積與壓力等等,此外,本研究使用線性回歸推算骨折間隙增加量與外力大小之線性關係,做為結構剛度之指標。髕骨位移量、骨折間隙變化以及結構剛度代表結構整體之穩定度。
結果顯示使用鋼線以及將螺釘放置在較為表淺的5 mm位置,都可以有效降低骨折間隙的變化量同時提升整體結構剛度。此外,使用全螺紋或是埋頭加壓螺釘的穩定度均比傳統之半螺紋中空螺釘為佳,且全螺紋之中空螺釘比埋頭加壓螺釘之穩定度更高,尤其是在螺釘放置位置在較為表淺之5 mm時,結果更為顯著。此外,若是考慮在微創的術式下,使用全螺紋之螺釘或是埋頭加壓螺釘,且放置在5 mm 深度,就算不使用鋼線,其穩定度亦高於部分螺紋之螺釘再加上鋼線之傳統做法。 在膝關節伸直的狀態下,只有使用全螺紋之螺釘與埋頭加壓螺釘而無使用鋼線的結構剛度為1924.6與1531 N/mm,而使用部分螺紋之螺釘加上鋼線之結構剛度在螺釘深度為5 mm時為1054 N/mm,螺釘深度為10 mm時則為727.37 N/mm。當膝關節彎曲45度時,只有使用全螺紋之螺釘與埋頭加壓螺釘而無使用鋼線的結構剛度為1652.1與1445.4 N/mm,而使用部分螺紋之螺釘加上鋼線之結構剛度在螺釘深度為5 mm時為937.68 N/mm,螺釘深度為10 mm時則為694.54 N/mm。在接觸面積與壓力的結果方面,在目前的結果中並無法歸納出一個明確的趨勢。
根據本研究之結果,建議使用全螺紋或是埋頭加壓中空螺釘八配鋼線以達到固定髕骨橫斷骨折之最加功效;此外,若是考慮採用微創手術的方式而不使用鋼線,則建議使用全螺紋或是埋頭加壓中空螺釘且放置於較為表淺之位置(5-mm),可以獲得較佳之穩定度。若是選擇將螺釘放在較為深的位置時(10-mm),則建議使用鋼線以加強固定功效;螺釘放置於較深的位置且不使用鋼線之方式則不建議臨床醫師使用。
英文摘要 Cannulated screws with an anterior wire are currently used for managing transverse patellar fracture. However, the addition of the anterior wire is often applied via an open approach which may increase the surgical trauma and compromise the following biological healing of the fracture. Although fixation using the anterior wire increases the stability of the fractured patella more substantially than that without the anterior wire, a less invasive fixation alternative using screws without the anterior wire was thus proposed based on the supporting strength from screws. Without the anterior tension wiring, these minimally invasive surgeries (MIS) were expected to reduce early postoperative pain, results in higher mobility angles of the injured knee, and decreases the incidence of complications. Hence, this study aimed to compare the mechanical behaviors of a fractured patella fixed with various screws types and at various screw proximities with and without the anterior wire. Clarifying the effect of the anterior wire with various screw types and proximities on the stability helps the surgeon to make decisions in the management of patellar fractures.
An FE knee model contained a fractured patella, which was fixed with various types of cannulated screws and an anterior wire, was created in the present study. Three types of screws, namely partial thread, full thread, and headless compression screws, and two screw proximities, namely 5 and 10 mm away from the leading edge of the patella, were used. The effect of the anterior wire was clarified by comparing the results of fracture fixation with and without the wire. Two different knee flexion degrees were considered, namely knee full extension and flexion 45゚, furthermore two different loading magnitudes, namely 400 N and 800 N, were used to examine the mechanical responses of the fractured patella with various fixation conditions. The maximum gap opening distance and fragment displacement under loading represent the “stability” of the fractured patella with various fixation conditions. The ratio of the applied load and the gap opening distance obtained by linear regression was regarded as the stiffness of the structure. The stiffness is also an index to access the stability.
Compared with partial thread screw, the full thread screw increased the stability of the fractured patella with reducing fragment displacement and fracture gap opening distance. Using the anterior wire and placing the screws at 5-mm proximity were also helpful to increase the stability. The effect of the anterior wire was obvious with 10-mm screw proximity, but nonobvious with 5-mm screw proximity. In knee full extension, the stiffness of the full thread and headless compression screws at 5-mm proximity without the anterior wire was 1924.6 and 1531 N/mm, respectively. By contrast, the stiffness of the partial thread screw with the anterior wire was 1054 and 727.37 N/mm, respectively at 5-mm and 10-mm proximities. In knee flexion 45°, the linear stiffness of the full thread and headless compression screws at 5-mm proximity without the anterior wire was 1652.1 and 1445.4 N/mm, respectively, while the linear stiffness of the partial thread screw with the anterior wire was 937.68 and 694.54 N/mm, respectively at 5-mm and 10-mm proximities.
The anterior wire along with the full thread screw is preferentially recommended for maintaining the surgical fixation of the fractured patella. Without the use of anterior wiring, the full thread or headless compression screws with 5-mm placement may be considered as a less invasive alternative; however, simple screw fixation at a deeper placement (10-mm) is least recommended for the fixation of transverse patellar fracture.
論文目次 Abstract I
中文摘要 III
Contents V
List of Tables VII
List of Figures VII
Chapter 1. General Introduction 1
1.1 Anatomy of patella 1
1.2 Kinematic of patella during knee flexion/extension 2
1.3 Epidemiology of patellar fracture 4
1.4 Classification of patellar fractures 4
1.5 Treatment of patellar fractures 6
1.5.1 Tension band 7
1.5.2 Modified tension band 8
1.5.3 Cannulated screw with tension band 9
1.6 Statement of problems and rationales 11
1.7 Literature review 12
1.7.1 Literature review of clinical studies 12
1.7.2 Literature review of mechanical studies 13
1.7.3 Summary of literature review 14
1.8 Finite element method 15
1.9 Motivation and objectives 16
Chapter 2. Material and Methods 17
2.1 Solid modeling 17
2.2 Finite element modeling 22
2.2.1 Finite element models 22
2.2.2 Material properties 23
2.2.3 Boundary conditions 24
2.2.4 Validation 25
2.2.5 Index 25
Chapter 3. Results 27
3.1 Results of validation 27
3.2 Patella displacement and gap opening in knee full extension 28
3.2.1 Total displacement of the patella 28
3.2.2 Maximum gap opening and stiffness 35
3.3 Patella displacement and gap opening in knee flexion 45° 39
3.3.1 Total Displacement of the patella 39
3.3.2 Maximum gap opening and stiffness 46
3.4 Contact pressure and area in knee full extension 50
3.5 Contact pressure and area in knee flexion 45° 54
Chapter 4. Discussion and Conclusion 58
4.1 Screw proximity 60
4.2 Thread type 62
4.3 Contact pressure and area 66
4.4 Limitation 68
4.5 Conclusion 69
References 70
Appendix 75
A.1 Finite element modeling and boundary condition 75
A.2 Result 78
A2.1 Fragment displacement and gap opening distance 78
A.2.2 Contact pressure and area 82

List of Tables
Table 3-1. Comparison of the stiffness and load with 2 mm deformation in the experiment and FE calculations………………………………………………………………………. 27
Table A-1 Comparison of the stiffness and load with 2 mm deformation in the experiment and FE calculations ………………………………………………………………………77
Table A-2. Maximum displacement of the fragment, gap opening, contact pressure and contact area of the fractured patella with screw and wire under various loading magnitudes and directions …………………………………………………………………..........……81

List of Figures
Figure 1-1. Right knee joint complex 1
Figure 1-2. Contact areas between the patella and femoral condyle during knee flexion 3
Figure 1-3. Force and contact of the patella during knee flexion 3
Figure 1-4. AO classification of the patellar fracture 5
Figure 1-5. Loading on a fractured patella 6
Figure 1-6. Tension band principles 7
Figure 1-7. The types of loop for patellar fracture 8
Figure 1-8. Modified tension band technique for patellar fracture. Anterior view (left) and lateral view (right) 9
Figure 1-9. Procedure of the application cannulated screws and anterior wire on the fractured patella (Source: http://kaitlinlindsay.com/) 10
Figure 1-10. Commonly used elements 15
Figure 2-1. The model of the knee joint in full extension 18
Figure 2-2. The model of knee joint in flexion 45˚ 18
Figure 2-3. The screw models used in this study 19
Figure 2-4. Diagram of the patella with screws and wire 19
Figure 2-5. Diagram of the patella with partial thread screws and wire 20
Figure 2-6. Diagram of the patella with full thread screws and wire 20
Figure 2-7. Diagram of the patella with headless compression screws and wire 21
Figure 2-8. The model with screw and wire at anterior (left) and lateral (right) view 21
Figure 2-9. The FE model in knee full extension with and without the anterior wire 23
Figure 2-10. The FE model in knee flexion 45˚ with and without the wire 23
Figure 2-11. Loading conditions of the models with and without the anterior wire in knee full extension (left) and flexion 45° (right) 25
Figure 3-1. Total displacement of the fractured patella with 5-mm screw placement plus the anterior wire in knee full extension under 800 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 29
Figure 3-2. Total displacement of the fractured patella with 5-mm screw placement plus the anterior wire in knee full extension under 400 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 30
Figure 3-3. Total displacement of the fractured patella with 5-mm screw placement only in knee full extension under 400 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 31
Figure 3-4. Total displacement of the fractured patella 10-mm screw placement plus the anterior wire in knee full extension under 800 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 32
Figure 3-5. Total displacement of the fractured patella 10-mm screw placement plus the anterior wire in knee full extension under 400 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 33
Figure 3-6. Total displacement of the fractured patella with 10-mm screw placement only in knee full extension under 400 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 34
Figure 3-7. Gap opening distance with 5-mm and 10-mm screw placements plus the anterior wire in knee full extension under 800 N force (HCS: headless compression screw) 36
Figure 3-8. Gap opening distance with 5-mm and 10-mm screw placement without the anterior wire in knee full extension under 400 N force (HCS: headless compression screw) 36
Figure 3-9. The relationship between gap opening distance and applied loading plus the wire in knee full extension (HCS: headless compression screw) 37
Figure 3-10. The relationship between gap opening distance and applied loading without the anterior wire in knee full extension (HCS: headless compression screw) 38
Figure 3-11. Total displacement of the fractured patella with 5-mm screw placement plus the anterior wire in knee flexion 45° under 800 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 40
Figure 3-12. Total displacement of the fractured patella with 5-mm screw placement plus the anterior wire in knee flexion 45° under 400 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 41
Figure 3-13. Total displacement of the fractured patella with 5-mm screw placement only in knee flexion 45° under 400 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 42
Figure 3-14. Total displacement of the fractured Patella with 10-mm screw placement plus the anterior wire in flexion 45° under 800 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 43
Figure 3-15. Total displacement of the fractured Patella with 10-mm screw placement plus the anterior wire in flexion 45° under 400 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 44
Figure 3-16. Total displacement of the fractured patella with 10-mm screw placement only in knee flexion 45° under 400 N force (top row: anterior view; bottom row: lateral view; HCS: headless compression screw) 45
Figure 3-17. Gap opening distance with 5-mm and 10-mm screw placement plus the anterior wire in knee flexion 45° under 800 N force (HCS: headless compression screw) 47
Figure 3-18. Gap opening distance with 5-mm and 10-mm screw placement without the anterior wire in knee flexion 45° under 400 N force (HCS: headless compression screw) 47
Figure 3-19. The relationship between gap opening distance and applied loading with the wire in knee flexion 45° (HCS: headless compression screw) 48
Figure 3-20. The relationship between gap opening distance and applied loading without the wire in flexion 45° (HCS: headless compression screw) 49
Figure 3-21. Contact area between the fragments with the anterior wire in knee full extension (HCS: headless compression screw) 51
Figure 3-22. Contact area between the fragments without the anterior wire in full knee extension (HCS: headless compression screw) 52
Figure 3-23. Contact pressure with (top row) and without (bottom row) the anterior wire at 5-mm screw proximity in knee full extension (HCS: headless compression screw) 53
Figure 3-24. Contact pressure with (top row) and without (bottom row) the anterior wire at 10-mm screw proximity in knee full extension (HCS: headless compression screw) 53
Figure 3-25. Contact area between the fragments with the anterior wire in knee flexion 45° (HCS: headless compression screw) 55
Figure 3-26. Contact area between the fragments without the anterior wire in knee flexion 45° (HCS: headless compression screw) 56
Figure 3-27. Contact pressure with (top row) and without (button row) the anterior wire at 5-mm screw proximity in knee flexion 45° (HCS: headless compression screw) 57
Figure 3-28. Contact pressure with (top row) and without (button row) the anterior wire at 10-mm screw proximity in knee flexion 45° (HCS: headless compression screw) 57
Figure 4-1. Effect of the wire with different screw proximities 61
Figure 4-2. Effect of the screw types with different screw proximities 62
Figure 4-3. The relationship between the force and gap opening distance in the full thread screw and headless compression screw (HCS) at 5-mm proximity without the wire in the, and partial thread screw at 5-mm and 10-mm screw proximities plus the anterior wire in knee full extension 63
Figure 4-4. The relationship between the force and gap opening distance in the full thread screw and headless compression screw (HCS) at 5-mm proximity without the wire in the, and partial thread screw at 5-mm and 10-mm screw proximities plus the anterior wire in knee flexion 45° 64
Figure A-1. Loading conditions of the simplified model 76
Figure A-2. Total deformation (mm) of the fractured patella under an 800 N force parallel to the long axis of patella with the wire. 79
Figure A-3. Total deformation (mm) of the fractured patella under a 400 N force parallel to the long axis of patella without the wire. 79
Figure A-4. Total deformation (mm) of the fractured patella under 800 N force in a direction 45° to the long axis of patella with the wire. 80
Figure A-5. Total deformation (mm) of the fractured patella under a 400 N force in a direction 45° to the long axis of patella without the wire. 80
Figure A-6. Contact pressure (MPa) of the fracture site under a 800 N force in a direction parallel to the long axis of the patella with the wire 82
Figure A-7. Contact pressure (MPa) of the fracture site under a 400 N force in a direction parallel to the long axis of the patella without the wire 83
Figure A-8. Contact pressure (MPa) of the fracture site under a 800 N force in a direction 45° to the long axis of the patella with the wire 83
Figure A-9. Contact pressure (MPa) of the fracture site under a 400 N force in a direction 45° to the long axis of the patella without the wire 84

參考文獻 References
Apostolovic, M., B. Vukomanovic, N. Slavkovic, V. Vuckovic, M. Vukcevic, G. Djuricic and N. Kocev (2011). "Acute patellar dislocation in adolescents: operative versus nonoperative treatment." Int Orthop 35(10): 1483-1487.
Baydar, M. L., T. Atay, Ö. Gürbüz, B. Y. Baykal, H. Burç, V. Kırdemir and R. Kayacan (2011). "Compressive screwing of transverse patella fractures provides better resistance to traction than tension band." European Journal of Orthopaedic Surgery & Traumatology 21(2): 105-110.
Benjamin, J., J. Bried, M. Dohm and M. McMurtry (1987). "Biomechanical evaluation of various forms of fixation of transverse patellar fractures." J Orthop Trauma 1(3): 219-222.
Berg, E. E. (1997). "Open reduction internal fixation of displaced transverse patella fractures with figure-eight wiring through parallel cannulated compression screws." J Orthop Trauma 11(8): 573-576.
Bostman, O., O. Kiviluoto, S. Santavirta, J. Nirhamo and E. Wilppula (1983). "Fractures of the patella treated by operation." Arch Orthop Trauma Surg 102(2): 78-81.
Bostrom, A. (1972). "Fracture of the patella. A study of 422 patellar fractures." Acta Orthop Scand Suppl 143: 1-80.
Bryant, T. L., C. L. Anderson, C. G. Stevens, B. P. Conrad, H. K. Vincent and K. K. Sadasivan (2015). "Comparison of cannulated screws with FiberWire or stainless steel wire for patella fracture fixation: A pilot study." J Orthop 12(2): 92-96.
Burgin, L. V., L. Edelsten and R. M. Aspden (2014). "The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading." Med Eng Phys 36(2): 226-232.
Burvant, J. G., K. A. Thomas, R. Alexander and M. B. Harris (1994). "Evaluation of methods of internal fixation of transverse patella fractures: a biomechanical study." J Orthop Trauma 8(2): 147-153.
Carpenter, J. E., R. Kasman and L. S. Matthews (1994). "Fractures of the patella." Instr Course Lect 43: 97-108.
Carpenter, J. E., R. A. Kasman, N. Patel, M. L. Lee and S. A. Goldstein (1997). "Biomechanical evaluation of current patella fracture fixation techniques." J Orthop Trauma 11(5): 351-356.
Chang, C.-W., Y.-N. Chen, C.-T. Li, Y.-H. Chung, C.-H. Chang and Y.-T. Peng (2018). "Role of screw proximity in the fixation of transverse patellar fractures with screws and a wire." Journal of Orthopaedic Surgery 26(3): 2309499018789705.
Chang, C. W., Y. N. Chen, C. T. Li, C. R. Chung, C. C. Tseng, C. H. Chang and Y. T. Peng (2019). "Biomechanical investigation of tibial tubercle osteotomy fixed with various screw configurations." Injury 50(2): 263-271.
Chen, Y. N., C. W. Chang, C. T. Li, C. H. Chang and C. F. Lin (2015). "Finite element analysis of plantar fascia during walking: a quasi-static simulation." Foot Ankle Int 36(1): 90-97.
Chen, Y. N., C. W. Chang, C. W. Lin, C. W. Wang, Y. T. Peng, C. H. Chang and C. T. Li (2017). "Numerical investigation of fracture impaction in proximal humeral fracture fixation with locking plate and intramedullary nail." Int Orthop.
Chen, Y. N., P. Y. Lee, C. H. Chang, C. W. Chang, Y. H. Ho, C. T. Li and Y. T. Peng (2016). "Computational comparison of tibial diaphyseal fractures fixed with various degrees of prebending of titanium elastic nails and with and without end caps." Injury 47(10): 2339-2346.
Chiang, C. C., W. M. Chen, C. F. Jeff Lin, C. F. Chen, C. K. Huang, Y. H. Tzeng and C. L. Liu (2011). "Comparison of a minimally invasive technique with open tension band wiring for displaced transverse patellar fractures." J Chin Med Assoc 74(7): 316-321.
Chiang, C. C., C. K. Huang, W. M. Chen, C. F. Lin, Y. H. Tzeng and C. L. Liu (2011). "Arthroscopically assisted percutaneous osteosynthesis of displaced transverse patellar fractures with figure-eight wiring through paired cannulated screws." Arch Orthop Trauma Surg 131(7): 949-954.
Cho, J. H. (2013). "Percutaneous cannulated screws with tension band wiring technique in patella fractures." Knee Surg Relat Res 25(4): 215-219.
Cramer, K. E. and B. R. Moed (1997). "Patellar Fractures: Contemporary Approach to Treatment." J Am Acad Orthop Surg 5(6): 323-331.
Curtis, M. J. (1990). "Internal fixation for fractures of the patella. A comparison of two methods." J Bone Joint Surg Br 72(2): 280-282.
Dargel, J., S. Gick, K. Mader, J. Koebke and D. Pennig (2010). "Biomechanical comparison of tension band- and interfragmentary screw fixation with a new implant in transverse patella fractures." Injury 41(2): 156-160.
Domby, B., E. Henderson, A. Nayak, M. Erdogan, S. Gutierrez, B. G. Santoni and H. C. Sagi (2012). "Comparison of cannulated screw with tension band wiring versus compressive cannulated locking bolt and nut device (CompresSURE) in patella fractures-a cadaveric biomechanical study." J Orthop Trauma 26(12): 678-683.
Gibert, S., M. P. Kowaleski, R. Matthys, R. Nutzi, B. Serck and R. J. Boudrieau (2016). "Biomechanical comparison of pin and tension-band wire fixation with a prototype locking plate fixation in a transverse canine patellar fracture model." Vet Comp Orthop Traumatol 29(1): 20-28.
Gosal, H. S., P. Singh and R. E. Field (2001). "Clinical experience of patellar fracture fixation using metal wire or non-absorbable polyester--a study of 37 cases." Injury 32(2): 129-135.
Gwinner, C., S. Mardian, P. Schwabe, K. D. Schaser, B. D. Krapohl and T. M. Jung (2016). "Current concepts review: Fractures of the patella." GMS Interdiscip Plast Reconstr Surg DGPW 5: Doc01.
Helland, C., J. Bojsen-Moller, T. Raastad, O. R. Seynnes, M. M. Moltubakk, V. Jakobsen, H. Visnes and R. Bahr (2013). "Mechanical properties of the patellar tendon in elite volleyball players with and without patellar tendinopathy." Br J Sports Med 47(13): 862-868.
Hoshino, C. M., W. Tran, J. V. Tiberi, M. H. Black, B. H. Li, S. M. Gold and R. A. Navarro (2013). "Complications following tension-band fixation of patellar fractures with cannulated screws compared with Kirschner wires." J Bone Joint Surg Am 95(7): 653-659.
John, J., W. W. Wagner and J. H. Kuiper (2007). "Tension-band wiring of transverse fractures of patella. The effect of site of wire twists and orientation of stainless steel wire loop: a biomechanical investigation." Int Orthop 31(5): 703-707.
Kakazu, R. and M. T. Archdeacon (2016). "Surgical Management of Patellar Fractures." Orthop Clin North Am 47(1): 77-83.
Kerrigan, J. R., D. Sanchez-Molina, J. Neggers, C. Arregui-Dalmases, J. Velazquez-Ameijide and J. R. Crandall (2014). "Indentation response of human patella with elastic modulus correlation to localized fractal dimension and bone mineral density." J Mech Behav Biomed Mater 33: 99-108.
Korvick, D. L., J. F. Cummings, E. S. Grood, J. P. Holden, S. M. Feder and D. L. Butler (1996). "The use of an implantable force transducer to measure patellar tendon forces in goats." J Biomech 29(4): 557-561.
Lefaivre, K. A., P. J. O'Brien, H. M. Broekhuyse, P. Guy and P. A. Blachut (2010). "Modified tension band technique for patella fractures." Orthop Traumatol Surg Res 96(5): 579-582.
Levack, B., J. P. Flannagan and S. Hobbs (1985). "Results of surgical treatment of patellar fractures." J Bone Joint Surg Br 67(3): 416-419.
Lin, T., J. Liu, B. Xiao, D. Fu and S. Yang (2015). "Comparison of the outcomes of cannulated screws vs. modified tension band wiring fixation techniques in the management of mildly displaced patellar fractures." BMC Musculoskelet Disord 16: 282.
Mao, N., D. Liu, H. Ni, H. Tang and Q. Zhang (2013). "Comparison of the cable pin system with conventional open surgery for transverse patella fractures." Clin Orthop Relat Res 471(7): 2361-2366.
Mao, N., H. Ni, W. Ding, X. Zhu, Y. Bai, C. Wang, Y. Zhao, Z. Shi, M. Li and Q. Zhang (2012). "Surgical treatment of transverse patella fractures by the cable pin system with a minimally invasive technique." J Trauma Acute Care Surg 72(4): 1056-1061.
Marsell, R. and T. A. Einhorn (2011). "The biology of fracture healing." Injury 42(6): 551-555.
Meng, D., Y. Ouyang, H. Chen, J. Zhou, Z. Xie, Y. Lin, H. Lin and C. Hou (2018). "Biomechanics test of fixation of star-shaped six-part patellar fractures with petal-shaped poly-axial locking plate." Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 32(3): 311-315.
Moore, T. B., B. R. Sampathi, D. P. Zamorano, M. C. Tynan and J. A. Scolaro (2018). "Fixed angle plate fixation of comminuted patellar fractures." Injury 49(6): 1203-1207.
Nathan, S. T., B. E. Fisher, C. S. Roberts and P. V. Giannoudis (2011). "The management of nonunion and delayed union of patella fractures: a systematic review of the literature." Int Orthop 35(6): 791-795.
Reilly, D. T. and M. Martens (1972). "Experimental analysis of the quadriceps muscle force and patello-femoral joint reaction force for various activities." Acta Orthop Scand 43(2): 126-137.
Rho, J. Y. (1996). "An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone." Ultrasonics 34(8): 777-783.
Sa-Ngasoongsong, P., K. Chulsomlee, S. Wongsak, C. Suphachatwong and V. Kawinwonggowit (2016). "The Use of Dual Reconstruction Plates for Failed Fixation of Patellar Fracture after Total Knee Replacement: A Case Report." Malays Orthop J 10(3): 52-55.
Schilz, J. L. (1995). "Fractures of the patella." J Bone Joint Surg Am 77(5): 808.
Scilaris, T. A., J. L. Grantham, M. J. Prayson, M. P. Marshall, J. J. Hamilton and J. L. Williams (1998). "Biomechanical comparison of fixation methods in transverse patella fractures." J Orthop Trauma 12(5): 356-359.
Shirazi-Adl, A., M. Dammak and G. Paiement (1993). "Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants." J Biomed Mater Res 27(2): 167-175.
Smith, S. T., K. E. Cramer, D. E. Karges, J. T. Watson and B. R. Moed (1997). "Early complications in the operative treatment of patella fractures." J Orthop Trauma 11(3): 183-187.
Thelen, S., J. Schneppendahl, R. Baumgartner, C. Eichler, J. Koebke, M. Betsch, M. Hakimi, J. Windolf and M. Wild (2013). "Cyclic long-term loading of a bilateral fixed-angle plate in comparison with tension band wiring with K-wires or cannulated screws in transverse patella fractures." Knee Surg Sports Traumatol Arthrosc 21(2): 311-317.
Tian, Y., F. Zhou, H. Ji, Z. Zhang and Y. Guo (2011). "Cannulated screw and cable are superior to modified tension band in the treatment of transverse patella fractures." Clin Orthop Relat Res 469(12): 3429-3435.
Wang, C. X., L. Tan, B. C. Qi, X. F. Hou, Y. L. Huang, H. P. Zhang and T. C. Yu (2014). "A retrospective comparison of the modified tension band technique and the parallel titanium cannulated lag screw technique in transverse patella fracture." Chin J Traumatol 17(4): 208-213.
Weber, M. J., C. J. Janecki, P. McLeod, C. L. Nelson and J. A. Thompson (1980). "Efficacy of various forms of fixation of transverse fractures of the patella." J Bone Joint Surg Am 62(2): 215-220.
Wild, M., T. Khayal, D. Miersch, J. Windolf and M. Hakimi (2008). "Dynamic cerclage wiring of patellar fractures. Complications and midterm functional results." Unfallchirurg 111(11): 892-897.
Wu, C. C., C. L. Tai and W. J. Chen (2001). "Patellar tension band wiring: a revised technique." Arch Orthop Trauma Surg 121(1-2): 12-16.
Yamagiwa, H. and N. Endo (2009). "[Bone fracture and the healing mechanisms. Histological aspect of fracture healing. Primary and secondary healing]." Clin Calcium 19(5): 627-633.
Zhu, Y., S. Liu, W. Chen, L. Wang, X. Zhang and Y. Zhang (2018). "Socioeconomic factors and individual lifestyles influencing the incidence of patella fractures: a national population-based survey in China." Int Orthop.
Zysset, P. K., X. E. Guo, C. E. Hoffler, K. E. Moore and S. A. Goldstein (1999). "Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur." J Biomech 32(10): 1005-1012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-27起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-27起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw