進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0708202016545200
論文名稱(中文) 負重鞋對老年人步行下肢肌力活化及跨越障礙運動學之影響
論文名稱(英文) Effect of weighted-shoes on muscle activities of the lower extremities during walking and kinematics during obstacle crossing in the elderly
校院名稱 成功大學
系所名稱(中) 體育健康與休閒研究所
系所名稱(英) Institute of Physical Education, Health & Leisure Studies
學年度 108
學期 2
出版年 109
研究生(中文) 陳育延
研究生(英文) Yu-Yen Chen
學號 RB6074064
學位類別 碩士
語文別 中文
論文頁數 102頁
口試委員 指導教授-邱宏達
口試委員-蔡一如
口試委員-鄭匡佑
召集委員-郭藍遠
中文關鍵字 負重鞋  跌倒風險  下肢肌電訊號  跨越障礙運動學 
英文關鍵字 Weighted-shoe  risk of fall  lower extremity electromyography  obstacle crossing 
學科別分類
中文摘要 本研究主要探討高齡者穿著負重健走鞋,在不同負重狀態下,對於步行過程中下肢肌肉活化以及跨越障礙運動學之影響性。方法:本研究招募30名65歲以上高齡者(男性:14名; 女性:16名),排除行動不便、矯正視力異常以及移動性問題之動作表現評估表(POMA)分數低於25分者(中、高度跌倒風險者)。實驗中參與者隨機穿著未負重與後負重50、100、150、200、250g之健走鞋,分別進行兩部分實驗: (1)行走測試以評估下肢肌電訊號(RMS)之影響,(2)跨越障礙物 (15cm) 之運動學分析,以評估負重鞋應用對於執行高絆倒風險動作時的影響。結果:無論男性、女性高齡者穿著負重健走鞋時,執行跨越障礙運動學上,隨負重(50g~250g)改變並無明顯差異性(p<.05),而在下肢肌肉徵招效應上,雖負重改變無達顯著影響,但發現穿著負重健走鞋對於步行時下肢肌肉徵招的策略上,受試者間有很大差異性,其中日常唯有步行運動習慣之高齡者,當負重增加時肌肉徵招較為明顯。結論:對於下肢肌力正常之高齡者,如穿著300g~600g之日常用鞋 並不會有無法負荷鞋重之危險性,而若要以鞋負重(50g~250g)增加步行運動之效益,建議下肢功能正常無運動習慣或唯有步行運動習慣者,可能會有較佳使用效果。
英文摘要 The purpose of this study was to investigate the muscle activities of the lower extremity during walking and kinematics during obstacle crossing under wearing varied mass of weighted-shoes in older adults. Methods: Thirty older adults (14 males & 16 females) aged ≥ 65 years were included in this study. Participants were included if they had no mobility problem, abnormal corrective vision, and higher fall risk performance (POMA<25). Participants were asked to wearing weighted-shoes with unloading, 50, 100, 150, 200 and 250g added mass to finish experimental tasks. There were two parts of the experiments in this study. In the first experiment, participants were asked to walking on the treadmill with self-selected gait speed and recorded the lower extremity electromyography by EMG sensor. In the second experiment, a motion capture system was used to simultaneously record kinematics during crossing obstacle at height of 15cm. Result: No matter male or female elder adults, there was no significantly different kinematics during obstacle crossing under wearing varied weighted-shoes (0g~ 250g). In the EMG result showed that there was no significant effect on muscle recruitment by wearing different weighted-mass (0g~250g) shoes. However, it was observed that there was a great difference in muscle activation patterns on wearing varied weighted-mass shoes between participants. It was worthly noted that the elderly whose daily exercise is walking, the effect of muscle recruitment is more obvious when increasing the weighted-mass on shoes. Conclusion: For the elderly with normal lower limb strength, wearing shoes at weight between 300g~600g, there is no danger of being unable to bear the weight of the shoes. For the walking training, the elder who had normal lower limb function with no exercise habit or only daily walking habit may have more training benefit of walking exercise with wearing weighted-shoe (50~250g).
論文目次 目錄
第一章 緒論 1
第一節、研究背景與動機 1
第二節、研究目的 3
第三節、 研究假設 3
第四節、名詞操作定義 3
第五節、研究限制 6
第六節、研究重要性 7
第二章 文獻探討 8
第一節、影響高齡者跌倒風險的因子 8
第二節、高齡者跨越障礙之運動學 9
第三節、改善下肢肌力對高齡者跌倒風險之影響 11
第四節、負重鞋之加重方式 14
第五章、負重鞋在訓練上之效益與風險性 16
第六節、總結 18
第三章 研究方法 19
第一節、研究對象 19
第二節、研究工具 20
第三節、實驗流程 28
第四節、資料分析與處理 33
第肆章 研究結果 44
第一節 負重鞋重心位置 45
第二節 參與者身體功能性之表現 47
第三節 負重鞋對高齡者步行應用之影響 48
第四節 負重鞋對跨越障礙運動學之影響 57
第五章 討論 70
第一節 負重鞋對高齡者步行下肢肌肉徵招之影響 70
第二節 負重鞋對高齡者步態穩定性之影響 74
第三節 負重鞋對高齡者跨越障礙之影響 76
第四節 實驗限制 80
第六章 結論與建議 81
第一節 結論 81
第二節 建議 82
REFERENCE 83
附錄 88
附錄表一、參與者基本資料 (男) 88
附錄表一、參與者基本資料(女) 89
附錄表二、實驗健走鞋基本資料 90
附錄表三、移動性問題之動作表現評估表(TINETTI PERFORMANCE ORIENTED MOBILITY ASSESSMENT;POMA) 91
附錄表四、負重裝置對原始鞋的動作影響之結果表 92
附錄表五、高空安全系統對跨越動作之影響 98
附錄資料 研究參與同意書 100


圖目錄
圖一、步態週期分期示意圖 4
圖 二、、足踝SVM與Footswitch步態訊號示意圖 4
圖 三、均方根肌電示意圖 5
圖 四、跨越障礙物之平面動作分期(Maidan et al., 2018),從右至左依序為(1)後跨腳足尖距離;(2)前跨腳足尖跨越高度;(3)前跨腳足跟距離;(4)後跨腳足尖跨越高度 10
圖 五、負重鞋款示意圖: ASAHI Corporation 客製負重鞋(左圖);Uni-Shoe Iron(右圖) (Fitness, 2019; Ikenaga et al., 2012) 15
圖六、實驗之健走鞋(左)及自製負重輔具之示意圖(右) 20
圖七、負重輔具繪製圖 與Fabric 2.0 列印機 20
圖八、實驗鞋搭配自製負重輔具之示意圖 21
圖 九、加重金屬棒之示意圖 22
圖 十、不同負重狀態金屬砝碼擺放位置之介紹 (黑圈為砝碼放置位置) (劉璟洋,2017) 22
圖十一、統一規格實驗襪 23
圖十二、實驗障礙物示意圖 23
圖十三、安全防跌裝置(左)與參與者使用防跌裝置示意圖(右) 24
圖十四、自製鞋重心檢測平台測量區域的定義標示(左);實際實驗鞋檢測示意圖(右) 25
圖十五、實驗鞋於不同負重狀態下重心位置示意圖 26
圖十六、鞋重心檢測平台_準確度檢測示意圖 27
圖十七、肌電訊號感應器放置處示意圖 30
圖十八、反光點黏貼處示意圖 (紅點為反光球) 與實驗鞋反光球貼點位置圖 32
圖十九、跨越障礙實驗配置示意圖 33
圖 二十、步態分期下肢肌群作用圖 (Bonnefoy-Mazure & Armand, 2015) 34
圖二十一、SVM與footswitch 步態訊號對照圖 35
圖二十二、足踝步態SVM定義推蹬期與擺盪期之示意圖 36
圖二十三、肌電訊號流程圖 36
圖二十四、跨越前步行距離示意圖 38
圖二十五、定義擺盪期足尖最小高度之示意圖 38
圖二十六、前跨腳 (LD) 與後跨腳 (TL) 足尖擺盪期垂直軌跡 39
圖二十七、跨越障礙動作水平分析參數(數字表示動作順序),(1) 後跨腳足尖距離 (DTT);(2) 前跨腳足尖跨越高度 (CLT);(3) 前跨腳足跟距離 (DLH);(4) 後跨腳足尖跨越高度 (CTT) 40
圖 二十八、前跨腳與後跨腳跨越距離示意圖 41
圖二十九、前跨腳與後跨腳障礙物時,下肢關節角度之變化示意圖 41
圖三十、不同負重狀態鞋寬百分比(左)與鞋長百分比(右)位置示意圖 46
圖三十一、不同參與者推蹬期肌肉活化差異性,依序為兩名男性(M15、M8)與三名女性(F7、F10、F11) 49
圖三十二、不同參與者擺盪期肌肉活化差異性,依序為兩名女性(F6、F11)與三名男性(M2、M10、M11) 51
圖三十三、男、女性在不同負重狀態下步態及擺盪期時間 54
圖 三十四、參與者在不同負重狀態下擺盪期時間示意圖 55
圖三十五、推蹬期腓腸肌受鞋重之影響示意圖 70
圖 三十六、比較不同徵招反應組在不同鞋重比下肌電訊號散佈圖 73
圖 三十七、比較不同徵招反應組日常運動習慣 73
圖三十八、不同負重狀態之健走鞋與日常鞋重比 82



















表目錄
表一、參與者基本資料 19
表二、實驗鞋詳細基本資料 21
表 三、 不同負重狀態金屬棒數量擺放位置之介紹 22
表四、實驗障礙物尺寸 23
表 五、重心檢測儀準確度結果呈現 27
表 六。表面肌電感應器規格 28
表七、實驗鞋以鞋寬百分比之重心位置 45
表八、實驗鞋以鞋長百分比之重心位置 46
表九、實驗參與者身體功能性資料 47
表十、男女性別於不同負重狀態在推蹬期 (Pusf off)下肢標準化之RMS訊號 52
表十一、男女性別於不同負重狀態在擺盪期(Swing phase)下肢標準化之RMS訊號 53
表十二、男女性別於不同負重狀態行走之步態時間參數 56
表十三、男女性別於不同負重狀態在跨越障礙前步行參數(以腿長標準化) 59
表十四、男女性別於不同負重狀態行走之擺盪期參數 61
表十五、男女性別於不同鞋狀態在跨越障礙矢狀面運動學參數(以腿長標準化) 63
表十六、男女性別於不同鞋狀態在跨越障礙矢狀面運動學參數(以腿長標準化) 65
表十七、男女性別於不同鞋狀態在前跨腳 (Leading foot) 跨越障礙之關節運動學 68
表 十八、男女性別於不同鞋狀態在後跨腳 (Trailing foot) 跨越障礙之關節運動學 69
表十九、參與者日常運動習慣調查 72
表二十、男女性別於不同鞋狀態於跨越障礙前步行參數(以腿長標準化) 92
表二十一、男女性別於不同鞋狀態於跨越障礙前步態擺盪參數 93
表二十二、男女性別於不同鞋狀態在跨越障礙矢狀面運動學參數(以腿長標準化) 94
表二十三、男女性別於不同負重狀態在跨越之跨越步幅參數(以腿長標準化) 95
表二十四、男女性別於不同鞋狀態在前跨腳跨越障礙之關節運動學 96
表二十五、男女性別於不同鞋狀態在後跨腳 (Trailing foot) 跨越障礙之關節運動學 97



參考文獻 中文文獻
呂軒瑜、邱宏達(2015)。不同重量及分布之負重鞋對走路步態週期下肢肌電的影響(碩士論文)。國立成功大學,台南市。
邱顯光、劉錦璋 (2005)。 步行時跨越障礙物對老年人跌倒的影響。 大專體育(77), 186-192。
林銀秋 (2003)。健康老年人的跌倒危機─ 骨骼肌肉系統及步態分析之討論。中華體育季刊,17(3),70-74。
洪鈴雅、張家豪、蔡虔祿 (2013)。 運動訓練對老年人跌倒風險之探討。健康生活與成功老化學刊,5(1),28-36。
教育部體育屬(2018)。運動現況調查報告書。臺北市:作者。
陳偉瑀 (2007)。運動的好處。學校體育,98,29-35,DOI:10.29937/PES.200702.0006
國際發展委員會( 2018)。中華民國人口推估(2018至2065年)。台北市:作者
劉璟洋(2017)。鞋後負重對羽球基本步法表現之影響。 國立成功大學,台南市。
蔡佳良、吳昇光 (2003)。 認知對老人姿勢控制和跌倒的影響。大專體育,68,172-177。
鄧蓓蓓、邱宏達 (2013)。足部負重大小與分佈對跑步著地策略與地面撞擊力的影響(碩士論文)。國立成功大學,台南市。
蘇蕙芬、白嘉雯、 高永馨 (2013)。運動對老年人跌倒預防之探討。休閒運動健康評論,4(2), 13-33。
英文文獻
Alexander, B. H., Rivara, F. P., & Wolf, M. E. (1992). The cost and frequency of hospitalization for fall-related injuries in older adults. American Journal of Public Health, 82(7), 1020-1023.
Barrett, R., Mills, P., & Begg, R. (2010). A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait & Posture, 32(4), 429-435. doi:10.1016/j.gaitpost.2010.07.010
Begg, R., Best, R., Dell’Oro, L., & Taylor, S. (2007). Minimum foot clearance during walking: strategies for the minimisation of trip-related falls. Gait & posture, 25(2), 191-198.
Bonnefoy-Mazure, A., & Armand, S. (2015). Normal gait. In (pp. 199-214).
Boyer, K. A., & Nigg, B. M. (2004). Muscle activity in the leg is tuned in response to impact force characteristics. Journal of Biomechanics, 37(10), 1583-1588.
Brown, L. A., Doan, J., McKenzie, N. C., & Cooper, S. (2006). Anxiety-mediated gait adaptations reduce errors of obstacle negotiation among younger and older adults: implications for fall risk. Gait & Posture, 24(4), 418-423.
Browning, R. C., Modica, J. R., Kram, R., & Goswami, A. (2007). The effects of adding mass to the legs on the energetics and biomechanics of walking. Medicine & Science in Sports & Exercise, 39(3), 515-525.
Burden, A., Trew, M., & Baltzopoulos, V. (2003). Normalisation of gait EMGs: a re-examination. Journal of Electromyography and Kinesiology, 13(6), 519-532.
Cao, Z.-B., Maeda, A., Shima, N., Kurata, H., & Nishizono, H. (2007). The effect of a 12-week combined exercise intervention program on physical performance and gait kinematics in community-dwelling elderly women. Journal of physiological anthropology, 26(3), 325-332. doi:10.2114/jpa2.26.325
Cavanagh, P. R., & Lafortune, M. A. (1980). Ground reaction forces in distance running. Journal of biomechanics, 13(5), 397-406.
Chen, H.-C., Ashton-Miller, J. A., Alexander, N. B., & Schultz, A. B. (1991). Stepping over obstacles: gait patterns of healthy young and old adults. Journal of gerontology, 46(6), M196-M203. doi:10.1093/geronj/46.6.M196
Chen, H.-c., Ashton-Miller, J. A., Alexander, N. B., & Schultz, A. B. (1994a). Effects of age and available response time on ability to step over an obstacle. Journal of gerontology, 49(5), M227-M233.
Chien, J. H., Post, J., & Siu, K.-C. (2018). Effects of Aging on the Obstacle Negotiation Strategy while Stepping over Multiple Obstacles. Scientific Reports, 8(1), 8576.
Chiou, S. S., Turner, N., Zwiener, J., Weaver, D. L., & Haskell, W. E. (2012). Effect of boot weight and sole flexibility on gait and physiological responses of firefighters in stepping over obstacles. Human factors, 54(3), 373-386.
Chiu, H.-T., & Lin, H.-H. (2019). A preference test on shoes with varied distributions of masses. Footwear Science, 1-9. doi:10.1080/19424280.2019.1669077
Chou, L.-S., & Draganich, L. F. (1997). Stepping over an obstacle increases the motions and moments of the joints of the trailing limb in young adults. Journal of Biomechanics, 30(4), 331-337.
Chou, L.-S., & Draganich, L. F. (1998). Placing the trailing foot closer to an obstacle reduces flexion of the hip, knee, and ankle to increase the risk of tripping. Journal of Biomechanics, 31(8), 685-691.
Criswell, E. (2010). Cram's introduction to surface electromyography: Jones & Bartlett Publishers.
Di Fabio, R. P., Greany, J. F., & Zampieri, C. (2003). Saccade-stepping interactions revise the motor plan for obstacle avoidance. Journal of motor behavior, 35(4), 383-397.
Dobson, J. A., Riddiford-Harland, D. L., Bell, A. F., & Steele, J. R. (2017). Work boot design affects the way workers walk: A systematic review of the literature. Applied ergonomics, 61, 53-68.
Fiatarone, M. A., & Evans, W. J. (1993). The Etiology and Reversibility of Muscle Dysfunction in the Aged. Journal of gerontology, 48(Special_Issue), 77-83. doi:10.1093/geronj/48.Special_Issue.77
Fitness, I. (2019). Uni-Shoe Iron®. Retrieved from http://ironwearfitness.com/unishoeiron.html
Galna, B., Peters, A., Murphy, A. T., & Morris, M. E. (2009). Obstacle crossing deficits in older adults: a systematic review. Gait & posture, 30(3), 270-275. doi:10.1016/j.gaitpost.2009.05.022
Gottschall, J. S., & Kram, R. (2005). Energy cost and muscular activity required for leg swing during walking. Journal of Applied Physiology, 99(1), 23-30. doi:10.1152/japplphysiol.01190.2004
Grisso, J. A., Schwarz, D. F., Wishner, A. R., Weene, B., Holmes, J. H., & Sutton, R. L. (1990). Injuries in an elderly inner‐city population. Journal of The American Geriatrics Society, 38(12), 1326-1331. doi:10.1111/j.1532-5415.1990.tb03456.x
Guadagnin, E. C., da Rocha, E. S., Duysens, J., & Carpes, F. P. (2016). Does physical exercise improve obstacle negotiation in the elderly? A systematic review. Archives of Gerontology Geriatrics, 64, 138-145.
Hahn, M. E., & Chou, L.-S. (2004). Age-related reduction in sagittal plane center of mass motion during obstacle crossing. Journal of Biomechanics, 37(6), 837-844. doi:10.1016/j.jbiomech.2003.11.010
Hahn, M. E., Lee, H.-J., & Chou, L.-S. (2005). Increased muscular challenge in older adults during obstructed gait. Gait & Postur, 22(4), 356-361.
Hausdorff, J. M., Rios, D. A., & Edelberg, H. K. (2001). Gait variability and fall risk in community-living older adults: a 1-year prospective study. Archives of physical medicine and rehabilitation, 82(8), 1050-1056.
Heinrich, S., Rapp, K., Rissmann, U., Becker, C., & König, H.-H. (2010). Cost of falls in old age: a systematic review. Osteoporosis International, 21(6), 891-902.
Horlings, C. G., Van Engelen, B. G., Allum, J. H., & Bloem, B. R. (2008). A weak balance: the contribution of muscle weakness to postural instability and falls. Nature Reviews Neurology, 4(9), 504. doi:10.1038/ncpneuro0886
Huang, Y. S., Deng, P. P., & Chiu, H. T. (2014). Different preference of the weighted shoes between the females and males subject. In 7th World Congress of Biomechanics (pp. 1867).
Ikenaga, M., Yamada, Y., Mihara, R., Yoshida, T., Fujii, K., Morimura, K., . . . Kiyonaga, A. (2012). Effects of slightly-weighted shoe intervention on lower limb muscle mass and gait patterns in the elderly. Japanese Journal of Physical Fitness Sports Medicine, 61(5), 469-477. doi:10.7600/jspfsm.61.469
Jones, & Rose. (2005). Physical activity instruction of older adults. Human Kinetics.
Jones, C. J., Rikli, R. E., & Beam, W. C. (1999). A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Research quarterly for exercise and sport, 70(2), 113-119.
King, A. C. (2001). Interventions to promote physical activity by older adults. The Journals of Gerontology Series A: Biological Sciences Medical Sciences, 56(suppl_2), 36-46.
King, A. C., Pruitt, L. A., Phillips, W., Oka, R., Rodenburg, A., & Haskell, W. L. (2000). Comparative effects of two physical activity programs on measured and perceived physical functioning and other health-related quality of life outcomes in older adults. The Journals of Gerontology: Series A: Biological Sciences Medical Sciences. doi:10.1093/gerona/55.2.M74
Komi, P. (1986). Training of muscle strength and power: interaction of neuromotoric, hypertrophic, and mechanical factors. International Journal of Sports Medicine, 7(S 1), S10-S15.
Kovacs, C. R. (2005). Age-related changes in gait and obstacle avoidance capabilities in older adults: a review. Journal of Applied Gerontology, 24(1), 21-34.
Kulinski, K., DiCocco, C., Skowronski, S., & Sprowls, P. (2017). Advancing community-based falls prevention programs for older adults—the work of the Administration for Community Living/Administration on Aging. Frontiers in Public Health, 5, 4. doi:10.3389/fpubh.2017.00004
Lamoureux, E., Sparrow, W. A., Murphy, A., & Newton, R. U. (2003). The effects of improved strength on obstacle negotiation in community-living older adults. Gait & Posture, 17(3), 273-283. doi:10.1016/S0966-6362(02)00101-7
Lee, J.-A., Cho, S.-H., Lee, Y.-J., Yang, H.-K., & Lee, J.-W. (2010). Portable activity monitoring system for temporal parameters of gait cycles. Journal of medical systems, 34(5), 959-966.
Lim, H. S., & Yoon, S. (2014). The influence of short-term aquatic training on obstacle crossing in gait by the elderly. Journal of Physical Therapy Science, 26(8), 1219-1222.
Lowrey, C. R., Watson, A., & Vallis, L. A. (2007). Age-related changes in avoidance strategies when negotiating single and multiple obstacles. Experimental Brain Research, 182(3), 289-299. doi:10.1007/s00221-007-0986-0
Lu, T.-W., Chen, H.-L., & Chen, S.-C. (2006). Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights. Gait & Posture, 23(4), 471-479.
Maidan, I., Eyal, S., Kurz, I., Geffen, N., Gazit, E., Ravid, L., . . . Hausdorff, J. (2018). Age-associated changes in obstacle negotiation strategies: Does size and timing matter? Gait & Posture, 59, 242-247. doi:10.1016/j.gaitpost.2017.10.023
Massaad, F., Lejeune, T. M., & Detrembleur, C. (2007). The up and down bobbing of human walking: a compromise between muscle work and efficiency. The Journal of physiology, 582(2), 789-799. doi:10.1113/jphysiol.2007.127969
McFadyen, B. J., & Prince, F. (2002). Avoidance and accommodation of surface height changes by healthy, community-dwelling, young, and elderly men. The Journals of Gerontology Series A: Biological Sciences Medical Sciences, 57(4), B166-B174.
Murray, M., Spurr, G., Sepic, S., Gardner, G., & Mollinger, L. (1985). Treadmill vs. floor walking: kinematics, electromyogram, and heart rate. Journal of applied physiology, 59(1), 87-91.
Nene, A., Byrne, C., & Hermens, H. (2004). Is rectus femoris really a part of quadriceps?: Assessment of rectus femoris function during gait in able-bodied adults. Gait & Posture, 20(1), 1-13. doi:10.1016/S0966-6362(03)00074-2
Okubo, Y., Osuka, Y., Jung, S., Rafael, F., Tsujimoto, T., Aiba, T., . . . Tanaka, K. (2016). Walking can be more effective than balance training in fall prevention among community‐dwelling older adults. Geriatrics Gerontology International, 16(1), 118-125. doi:10.1111/ggi.12444
Okubo, Y., Schoene, D., & Lord, S. R. (2017). Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis. British Journal of Sports Medicine 51(7), 586-593.
Palvanen, M., Kannus, P., Parkkari, J., Pitkäja, T., Pasanen, M., Vuori, I., & Järvinen, M. (2000). The injury mechanisms of osteoporotic upper extremity fractures among older adults: a controlled study of 287 consecutive patients and their 108 controls. Osteoporosis International, 11(10), 822-831. doi:10.1007/s0019800700
Pan, H.-F., Hsu, H.-C., Chang, W.-N., Renn, J.-H., & Wu, H.-W. (2016). Strategies for obstacle crossing in older adults with high and low risk of falling. Journal of Physical Therapy Science, 28(5), 1614-1620. doi:10.1589/jpts.28.1614
Patla, A. E., Prentice, S. D., & Gobbi, L. T. (1996). Visual control of obstacle avoidance during locomotion: strategies in young children, young and older adults. In Advances in Psychology (Vol. 114, pp. 257-277): Elsevier.
Persch, L. N., Ugrinowitsch, C., Pereira, G., & Rodacki, A. L. (2009). Strength training improves fall-related gait kinematics in the elderly: a randomized controlled trial. Clinical Biomechanics, 24(10), 819-825. doi:10.1016/j.clinbiomech.2009.07.012
Robinovitch, S. N., Feldman, F., Yang, Y., Schonnop, R., Leung, P. M., Sarraf, T., . . . Loughin, M. (2013). Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. The Lancet, 381(9860), 47-54. doi:10.1016/S0140-6736(12)61263-X
Sabharwal, S., & Kumar, A. (2008). Methods for assessing leg length discrepancy. Clinical Orthopaedics Related Research, 466(12), 2910-2922.
Tinetti, M. E. (1989). Instability and falling in elderly patients. Paper presented at the Seminars in neurology.
Tinetti, M. E., Speechley, M., & Ginter, S. F. (1988). Risk factors for falls among elderly persons living in the community. New England Journal of Medicine, 319(26), 1701-1707. doi:10.1056/NEJM198812293192604
Winter, D. A. (1992). Foot trajectory in human gait: a precise and multifactorial motor control task. Physical Therapy, 72(1), 45-53.
Yoo, E. J., Jun, T. W., & Hawkins, S. A. (2010). The effects of a walking exercise program on fall-related fitness, bone metabolism, and fall-related psychological factors in elderly women. Research in Sports Medicine, 18(4), 236-250. doi:10.1080/15438627.2010.510098

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw