進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0708202014030800
論文名稱(中文) 三芽硫磷配位基之鐵錯化合物的探討
論文名稱(英文) Studies of Iron Complexes with Tridentate Bis(thiolato)phosphine Ligands
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 108
學期 2
出版年 109
研究生(中文) 林家緯
研究生(英文) Jia-Wei Lin
學號 L36071144
學位類別 碩士
語文別 英文
論文頁數 74頁
口試委員 指導教授-許鏵芬
口試委員-許智能
口試委員-陳嘉祥
中文關鍵字   硫醇鹽  硫自由基  反應性 
英文關鍵字 iron  thiolate  thiyl radical  reactivity 
學科別分類
中文摘要 鐵硫化合物的反應是一個熱門的研究議題,主要是因為它和生物系統的化學有很大的相關性。例如細胞色素P450 (Cytochrome P450, CYPs)和半胱氨酸雙加氧酶 (Cysteine dioxygenase, CDO),為了瞭解鐵硫化合物的化學反應性,在此研究主題,我們使用硫磷配基及其衍生物來探討鐵硫化學。特別在這個論文研究中,我們合成並鑑定三個化合物,他們分別為[FeIII(PS2”)2]- (1), [FeIII(PS2’)2]- (2) and [Fe(PS2”)2] (3) (如下圖所示). 將這三個化合物透過各種光譜鑑定得出以下結論,化合物3的電子結構應是含有硫自由基的鐵三價化合物。化合物1和3的氧化還原性質也進一部的研究與探討。此外,化合物1和2在空氣下穩定,另一方面,化合物3可以和氧氣反應產生在配基上氧化的產物,例如:磷氧化合物或是硫氧化物。這個反應可以經由電噴灑游離質譜儀觀測。
英文摘要 Iron thiolate chemistry has been an interesting research area due to its relevance in biological systems, such as cytochrome P450 (CYPs) and cysteine dioxygenase (CDO). To understand the fundamental iron thiolate chemistry, our lab has utilized (thiolato)phosphine ligand derivatives to explore iron chemistry. At this wok, we report three iron complexes binding with two bis(benzenethiolate)phosphine derivatives, PS2” and PS2 (PS2” = [P(C6H5)(C6H3-3-Me3Si-2-S)2]2- and PS2’ = [P(C6H5)(C6H3-4-Me-2-S)2]2-) Three complexes, [FeIII(PS2”)2]- (1), [FeIII(PS2’)2]- (2) and [Fe(PS2”)2] (3) are well characterized and studied by X-ray crystallography, elemental analysis, various spectroscopies and physical methods. Based on various spectroscopic and magnetic data, complex 3 likely has an electronic structure of [FeIII(PS2”)(PS2”•)] where PS2”• is PS2” ligand with a thiyl radical character. The redox chemistry of these complexes are further investigated. In addition, complexes 1 and 2 are air-stable, in contrast, complex 3 reacts with dioxygen to generate ligand-based oxygenation products such as phosphine-oxide, or sulfinate containing complexes. The reactions are monitored by ESI-MS combined with isotope studies.
論文目次 List of content
Abstract……………………………………………………………………………….….….I
中文摘要 ……………………………………………………………………….................II
Acknowledge(誌謝)……………………………………………………………………….III
List of content…………………………………………………………………………...…IV
List of Figure………………………………………………………………………………VI
List of Table………………………………………………………………………………..IX
Abbreviations…………………………………………………………………………...….X
Chapter 1. Introduction……………………………………………………………………...1
1-1 S-cenetr oxygenation chemistry in Cysteine dioxygenase (CDO) and related metal complexes…………………………………………………………………………….1
1-2 S-centered redox chemistry and reactivity of metal-thiolate complexes……...………3
1-3 Motivation of this work………………………………………………………………4
Chapter 2. Experimental Results………………………………………………………….....5
2-1 Synthesis and Characterization of [PPh4][FeIII(PS2”)2] ([PPh4][1])…….…………....5
Synthesis of [PPh4][FeIII(PS2”)2] ([PPh4][1])….……………………………...…….....5
X-ray structure…………………………………………………………………………5
The elemental analysis…………………………………………………………………8
ESI-mass spectrometry………………………………………………………………...8
The Electronic spectrum…………………………………………………………...…..9
The Nucleic Magnetic Resonance spectrum………………………………………...…9
The Electron Paramagnetic Resonance spectrum……………………...……………..10
The Magnetic studies………………………………………………………………....11
2-2 Synthesis and Characterization of [NBu4][FeIII(PS2’)2] ([NBu4][2])….…………....12
Synthesis of [NBu4][FeIII(PS2’)2] ([NBu4][2])….…………………………………....12
X-ray structure………………………………………………………………………..12
The elemental analysis……………………………………………………………..…15
ESI-mass spectrometry……………………………………………………………….15
The Electronic spectrum………………………………………………………….…..16
The Nucleic Magnetic Resonance spectrum………………………………………….16
The Electron Paramagnetic Resonance spectrum……………………...……………..17
2-3 Synthesis and Characterization of [Fe(PS2”)2] (3)…………..……………………...18
Synthesis of [Fe(PS2”)2] (3)………………………………………...………………..18
X-ray structure………………………………………………………………………..18
ESI-mass spectrometry……………………………………………………………….21
The Electronic spectrum……………………………………………………………...21
The Nucleic Magnetic Resonance spectrum……………………………………….…22
The Electron Paramagnetic Resonance spectrum……………………...……………..23
The Magnetic studies………………………………………………………………....24
2-4 Reactivity studies…………………......……………………………………….…….25
2-4-1 Redox chemistry of [PPh4][FeIII(PS2”)2] ([PPh4][1]) and [Fe(PS2”)2] (3)…..…25
2-4-2 Oxygenation reaction of [Fe(PS2”)2] (3)…………………………………….…32
Chapter 3. Discussion…………………………………………………………….…….….38
Chapter 4. Conclusion……………………………………………………………………...44
Chapter 5. Experimental and Instruments………………………………………………….45
5-1 General procedures and materials……………………………………………………...45
5-2 Synthesis…………………………………………………………………………….46
Synthesis of [PPh4][FeIII(PS2”)2] ([PPh4][1])…..………………………………….....46
Synthesis of [NBu4][FeIII(PS2’)2] ([NBu4][2])….…………………………………....46
Synthesis of [Fe(PS2”)2] (3)………………………………………………....…….....46
5-3 Instruments………………………………………………………………………….48
Reference…………………………………………………………………………………..50
Appendix A………………………………………………………………………………...53
The ESI-Mass spectrum of [Fe(PS2”)2] (3) react with 16O2
Appendix B………………………………………………………………………………...56
The ESI-Mass spectrum of [Fe(PS2”)2] (3) react with 18O2
Appendix C………………………………………………………………………………...58
CheckCIF report of [PPh4][FeIII(PS2”)2] ([PPh4][1]).2MeOH.H2O
Appendix D………………………………………………………………………………...61
CheckCIF report of [PPh4][FeIII(PS2”)2] ([PPh4][1]).3MeCN
Appendix E……………………………………………………………………………...…64
CheckCIF report of [NBu4][FeIII(PS2’)2] ([NBu4][2])
Appendix F………………………………………………………………………………...67
CheckCIF report of [Fe(PS2”)2] (3)
Appendix G………………………………………………………………………………...70
Can’t repeat synthesis crystal data and CheckCIF report of [NBu4][FeIII(PS2”)(PSSO2)]








List of Figure
Figure 1-1. Proposed CDO mechanism (RDS = rate-determining step)…………………...1
Figure 1-2. The mechanism of [FeII(N3PyS)(CH3CN)]+ react with dioxygen………….…2
Figure 1-3. The mechanism of [CoII(SODA)] reacting with dioxygen……………..…2
Figure 1-4. The redox chemistry of complex A...………………………………………….3
Figure 1-5. The reactivity of complex A with H2O and CH3OH…………………………….3
Figure 2-1. Synthesis of [PPh4][FeIII(PS2”)2] ([PPh4][1])…………………………………..5
Figure 2-2. ORTEP diagram of complex 1 shown with 35% thermal ellipsoids. H atoms and cation are omitted for clarity…………………………………………………………….…..7
Figure 2-3. The isotope distribution pattern of complex 1 in THF. The experiment pattern (top) The calculated pattern (bottom). Inset: The ESI-MS spectra of complex 1……...……..8
Figure 2-4. UV-vis-NIR spectrum of [PPh4][FeIII(PS2”)2] ([PPh4][1]) in THF, the spectrum exhibits three absorption bands at 460 nm (ε = 4.317 × 103 M-1cm-1)、590 nm (ε = 5.218 × 103 M-1cm-1) and 745 nm (ε = 3.030 × 103 M-1cm-1) in the visible region……………..9
Figure 2-5. The 1H NMR spectrum of [PPh4][FeIII(PS2”)2] ([PPh4][1]) in d2-DCM, revise by peak of d2-DCM = 5.32………...……………………………………………………….10
Figure 2-6. EPR spectrum of [PPh4][FeIII(PS2”)2] ([PPh4][1]) in 2-MeTHF at 4K……..….10
Figure 2-7. Ligand-field splitting diagram for a d5 species in an octahedral geometry…….11
Figure 2-8. The temperature dependence of χT of ([PPh4][1]) at 1 Tesla………………..…11
Figure 2-9. The temperature dependence of μeff of ([PPh4][1]) at 1 Tesla…..…………….11
Figure 2-10. Synthesis of [NBu4][FeIII(PS2’)2] ([NBu4][2])….………………..…….…....12
Figure 2-11. ORTEP diagram of complex 2 shown with 35% thermal ellipsoids. H atoms and cation are omitted for clarity………………..………………………………………....14
Figure 2-12. The isotope distribution pattern of complex 2 in THF. The experiment pattern (top) The calculated pattern (bottom). Inset: The ESI-MS spectra of complex 2.…………15
Figure 2-13. UV-vis-NIR spectrum of [NBu4][FeIII(PS2’)2] ([NBu4][2]) in THF, The spectrum exhibits three absorption bands at 470 nm (ε = 9.047 × 103 M-1cm-1)、585 nm (ε = 1.334 × 104 M-1cm-1) and 755 nm (ε = 6.307 × 103 M-1cm-1) in the visible region…….16
Figure 2-14. The 1H NMR spectrum of [NBu4][FeIII(PS2”)2] ([NBu4][2]) in d2-DCM, revise by peak of d2-DCM = 5.32……...……………………………………………...…………..17
Figure 2-15. EPR spectrum of [NBu4][FeIII(PS2’)2] ([NBu4][2]) in 2-MeTHF at 77K….....17
Figure 2-16. Synthesis of [Fe(PS2”)2] (3)………………………………..…………..……18
Figure 2-17. ORTEP diagram of complex 3 shown with 35% thermal ellipsoids. H atoms and cation are omitted for clarity………………………...………………………………....20
Figure 2-18. The isotope distribution pattern of complex 3 in THF. The experiment pattern (top) The calculated pattern (bottom). Inset: The ESI-MS spectra of complex 3.………....21
Figure 2-19. UV-vis-NIR spectrum of [Fe(PS2”)2] (3) in THF, the spectrum exhibits three absorption bands at 575 nm (ε = 4.468 × 103 M-1cm-1)、720 nm (ε = 1.599 × 103 M-1cm-1) and 865 nm (ε = 1.676 × 103 M-1cm-1) in the visible region……………………………22
Figure 2-20. The 1H NMR spectrum of [Fe(PS2”)2] (3) in d4-CD3OD, revise by peak of d4-CD3OD = 3.31…………………...………………..………………………………………..23
Figure 2-21. EPR spectrum of [Fe(PS2”)2] (3) in 2-MeTHF at 77K………..……………...23
Figure 2-22. Ligand-field splitting diagram for a d4 (left) and d5 (right) species in an octahedral geometry……………………………………………………………………….24
Figure 2-23. The temperature dependence of χT of [Fe(PS2”)2] (3) at 1 Tesla…………...24
Figure 2-24. The temperature dependence of μeff of [Fe(PS2”)2] (3) at 1 Tesla……………24
Figure 2-25. Overall mechanism of redox reaction……………………………………......25
Figure 2-26. Variation of electronic spectra titration one equivalent Co(Cp*)2 into the solution of [Fe(PS2”)2] (3) in THF (1.00 × 10-3 mM). The spectrum was taken every 0.25 equivalent Co(Cp*)2 in the course of 1.5 equivalent. Inset: the spectrum of isolated [PPh4][FeIII(PS2”)2] ([PPh4][1]) in THF……………………….………………….……….26
Figure 2-27. The titration of [Fe(PS2”)2] (3) with the addition of Co(Cp*)2 until 1.5 equivalents……………………………………………………………...……………….....26
Figure 2-28. Variation of electronic spectra titration one equivalent [Fe(Cp)2][BF4] into the solution of [PPh4][FeIII(PS2”)2] ([PPh4][1]) in THF (9.80 × 10-4 mM). The spectrum was taken every 0.5 equivalent [Fe(Cp)2][BF4] in the course of 1.0 equivalent. Inset: Inset: the spectrum was simulated with a mixture 50% isolated complex 1 and 50% blue species in THF…………………………………………......................................................................27
Figure 2-29. Variation of electronic spectra of [FeIII(PS2”)2]- (1) in THF (9.80 × 10-4 mM) adding two equivalent [Fe(Cp)2][BF4]. The spectrum was taken every 0.5 equivalent in the course of 3.0 equivalent. Inset: the spectrum of isolated blue complex in THF. Inset: the spectrum of blue species in THF…………………………………………………………...28
Figure 2-30. The titration of [FeIII(PS2”)2]- (1) with the addition of [Fe(Cp)2][BF4] until 3.0 equivalents…………………………………………………………………….…….…28
Figure 2-31. Variation of electronic spectra titration two equivalent Co(Cp*)2 into the solution of [FeIII(PS2”)2]- (1) adding two equivalent [Fe(Cp)2][BF4] in THF (9.80 × 10-4 mM). The spectrum was taken every 1.0 equivalent Co(Cp*)2 in the course of 2.0 equivalent. Inset: the spectrum of isolated complex 1 in THF................................................................29
Figure 2-32. Variation of electronic spectra of [Fe(PS2”)2] (3) in THF (1.32 × 10-3 mM) adding one equivalent [Fe(Cp)2][BF4]. The spectrum was taken every 0.5 equivalent in the course of 1.0 equivalent. Inset: the spectrum of blue species in THF………………....…..30
Figure 2-33. Variation of electronic spectra titration one equivalent Co(Cp*)2 into the solution of [Fe(PS2”)2] (3) adding one equivalent Co(Cp*)2 in THF (1.32 × 10-3 mM). The spectrum was taken every 0.5 equivalent in the course of 1.0 equivalent. Inset: The spectrum was simulated with a mixture 50% of isolated complex 1 and 50% of blue species in THF………………………………….……………………………..……………………...31
Figure 2-34. Overall mechanism of oxygenation reaction.…………….........................….32
Figure 2-35. Variation of electronic spectra of [PPh4][FeIII(PS2”)2] ([PPh4][1]) in THF (1.06 × 10-3 mM) exposed to dioxygen. The spectrum was taken every 4 hours in the course of 12 hours………………………………………………………………………………….……33
Figure 2-36. Variation of electronic spectra of [Fe(PS2”)2] (3) in THF (1.00 × 10-3 mM) exposed to dioxygen (0-40 hr). The spectrum was taken every 8 hours………………...….33
Figure 2-37. Variation of electronic spectra of [Fe(PS2”)2] (3) in THF (1.00 × 10-3 mM) exposed to dioxygen (40-64 hr). The spectrum was taken every 8 hours………………..…34
Figure 2-38. The Color of solution recorded at different reaction time……….…….…….34
Figure 2-39. Bar chart plot of relative abundance for specific species after adding dioxygen to [Fe(PS2”)2] (3) in THF. The samples are prepared every 8 hours in the course of 72 hours, then were simultaneously taken the ESI-mass spectrum. The ratio of each species is deconvoluted from the ESI-mass spectra (Appendix A)…………………………….……..35
Figure 2-40. Bar chart plot of relative abundance for specific species after adding 18O isotope dioxygen to [Fe(PS2”)2] (3) in THF. The samples are prepared every 12 hours in the course of 60 hours, then were simultaneously taken the ESI-mass spectrum. The ratio of each species is deconvoluted from the ESI-mass spectra (Appendix B)………………..………36
Figure 2-41. Variation of electronic spectra of [Fe(PS2”)2] (3) in DCM (1.52 × 10-3 mM) exposed to dioxygen (0-80 minutes). The spectrum was taken every 10 minutes. Inset: The spectrum of blue species in THF……………………………………………….………..…37
Figure 2-42. Variation of electronic spectra of [Fe(PS2”)2] (3) in DCM (1.52 × 10-3 mM) exposed to dioxygen (0-15 hours). The spectrum was taken every 3 hours. The spectrum of [Fe(PS2”)2] (3) react with dioxygen 64 hours………..…………………..…………….….37
Figure 3-1. Iron K-edge X-ray absorption spectra of [PPh4][FeIII(PS2”)2] ([PPh4][1]) (blue) and [Fe(PS2”) 2] (red)………………………………………………………………………39
Figure 3-2. The electronic spectra of [Fe(PS2”)2] (3) in different solvents (left). Comparing with [PPh4][FeIII(PS2”)2] ([PPh4][1]) in different solvents (right)…………………….…..40
Figure 3-3. The 1H-NMR spectra of [PPh4][FeIII(PS2”)2] ([PPh4][1]) in d3-CD3CN (top) and NMR spectra of [Fe(PS2”)2] (3) in d3-CD3CN (bottom)……….………………………….40
Figure 3-4. Synthesis of [PPh4][FeIII(PS2”)2] ([PPh4][1]) from [Fe(PS2”)2] (3)…………...41
Figure 3-5. ORTEP diagram of complex 1 shown with 35% thermal ellipsoids. H atoms and cation are omitted for clarity…………………………………….…………………………43



List of Table
Table 2-1. Crystallographic data of [PPh4][FeIII(PS2”)2]・H2O・2MeOH ([PPh4][1]・H2O・2MeOH)……………………………………………………………………………………..6
Table 2-2. Selected bond distance (Å) and angles (deg) of [PPh4][FeIII(PS2”)2]・H2O・2MeOH ([PPh4][1]・H2O・2MeOH)…………………………………..……………………..7
Table 2-3. The elementary analysis data of [PPh4][FeIII(PS2”)2] ([PPh4][1])………………..8
Table 2-4. Crystallographic data of [NBu4][FeIII(PS2’)2]・MeOH・THF・Ether ([NBu4][2]・MeOH・THF・Ether)…………………………………………………………….............…13
Table 2-5. Selected bond distance (Å) and angles (deg) of [NBu4][FeIII(PS2’)2]・MeOH・THF・Ether ([NBu4][2]・MeOH・THF・Ether)…………………………………….……..…14
Table 2-6. The elementary analysis data of [NBu4][FeIII(PS2’)2] ([NBu4][2])…………...15
Table 2-7. Crystallographic data of [Fe(PS2”)2]・THF (3・THF)………………….............19
Table 2-8. Selected bond distance (Å) and angles (deg) of [Fe(PS2”)2]・THF (3・THF)….20
Table 3-1. The selected bond distances of [PPh4][FeIII(PS2”)2] ([PPh4][1]), [NBu4][FeIII(PS2’)2] ([NBu4][2]) , [Fe(PS2”)2] (3)……………………………………...…38
Table 3-2. The EPR peak position of [PPh4][FeIII(PS2”)2] ([PPh4][1]), [Fe(PS2”)2] (3)…..38
Table 3-3. Comparing the χT and μeff value of [PPh4][FeIII(PS2”)2] ([PPh4][1]), [Fe(PS2”)2] (3)………………………………………………………………………………………….39
Table 3-4. Comparing the peak position of [PPh4][FeIII(PS2”)2] ([PPh4][1]) in d3-CD3CN with [Fe(PS2”)]2 (3) in d3-CD3CN…………………………………………….…………...41
Table 3-5. Crystallographic data of [PPh4][FeIII(PS2”)2]・3CH3CN ([PPh4][1]・3CH3CN)..42
Table 3-6. Comparing Selected bond distance (Å) and angles (deg) of [PPh4][FeIII(PS2”)2].2MeOH.H2O ([PPh4][1].2MeOH.H2O)and [PPh4][FeIII(PS2”)2].3CH3CN ([PPh4][1].3CH3CN)……….………………………………………………………………………….43
參考文獻 Reference
1. Aluri, S.; de Visser, S. P., The mechanism of cysteine oxygenation by cysteine dioxygenase enzymes. Journal of the American Chemical Society 2007, 129 (48), 14846-+.
2. Chang, Y. H.; Su, C. L.; Wu, R. R.; Liao, J. H.; Liu, Y. H.; Hsu, H. F., An Eight-Coordinate Vanadium Thiolate Complex with Charge Delocalization between V(V)-Thiolate and V(IV)-Thiyl Radical Forms. Journal of the American Chemical Society 2011, 133 (15), 5708-5711.
3. Chauhan, R.; Mashuta, M. S.; Grapperhaus, C. A., Reinvestigation of the first structurally characterized metal-coordinated sulfenic acid complex. Inorganic Chemistry Communications 2013, 37, 186-188.
4. Cook, S. A.; Borovik, A. S., Molecular Designs for Controlling the Local Environments around Metal Ions. Accounts of Chemical Research 2015, 48 (8), 2407-2414.
5. Faponle, A. S.; Seebeck, F. P.; de Visser, S. P., Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme. Journal of the American Chemical Society 2017, 139 (27), 9259-9270.
6. Fiedler, A. T.; Fischer, A. A., Oxygen activation by mononuclear Mn, Co, and Ni centers in biology and synthetic complexes. Journal of Biological Inorganic Chemistry 2017, 22 (2-3), 407-424.
7. Fischer, A. A.; Lindeman, S. V.; Fiedler, A. T., Spectroscopic and computational studies of reversible O-2 binding by a cobalt complex of relevance to cysteine dioxygenase. Dalton Transactions 2017, 46 (39), 13229-13241.
8. Fischer, A. A.; Lindeman, S. V.; Fiedler, A. T., A synthetic model of the nonheme iron-superoxo intermediate of cysteine dioxygenase. Chemical Communications 2018, 54 (80), 11344-11347.
9. Gordon, J. B.; Vilbert, A. C.; DiMucci, I. M.; MacMillan, S. N.; Lancaster, K. M.; Moenne-Loccoz, P.; Goldberg, D. P., Activation of Dioxygen by a Mononuclear Nonheme Iron Complex: Sequential Peroxo, Oxo, and Hydroxo Intermediates. Journal of the American Chemical Society 2019, 141 (44), 17533-17547.
10. Grapperhaus, C. A.; Kozlowski, P. M.; Kumar, D.; Frye, H. N.; Venna, K. B.; Poturovic, S., Singlet diradical character of an oxidized ruthenium trithiolate: electronic structure and reactivity. Angewandte Chemie-International Edition 2007, 46 (22), 4085-4088.
11. Grapperhaus, C. A.; Ouch, K.; Mashuta, M. S., Redox-Regulated Ethylene Binding to a Rhenium-Thiolate Complex. Journal of the American Chemical Society 2009, 131 (1), 64-+.
12. Dutta, A.; Flores, M.; Roy, S.; Schmitt, J. C.; Hamilton, G. A.; Hartnett, H. E.; Shearer, J. M.; Jones, A. K., Sequential Oxidations of Thiolates and the Cobalt Metallocenter in a Synthetic Metallopeptide: Implications for the Biosynthesis of Nitrile Hydratase. Inorganic Chemistry 2013, 52 (9), 5236-5245.
13. Eisenberg, R., Trigonal prismatic coordination in tris(dithiolene) complexes: Guilty or just non-innocent? Coordination Chemistry Reviews 2011, 255 (7-8), 825-836.
14. Eisenberg, R.; Gray, H. B., Noninnocence in Metal Complexes: A Dithiolene Dawn. Inorganic Chemistry 2011, 50 (20), 9741-9751.
15. Grapperhaus, C. A.; Poturovic, S., Electrochemical investigations of the tris(2-(diphenylphosphino)thiaphenolato)ruthenate(II) monoanion reveal metal- and ligand-centered events: Radical, reactivity, and rate. Inorganic Chemistry 2004, 43 (10), 3292-3298.
16. Grapperhaus, C. A.; Poturovic, S.; Mashuta, M. S., Dichloromethane alkylates a trithiolato-ruthenium complex to yield a methylene-bridged thioether core. Synthesis and structural comparison to the thiolato-ruthenium precursor. Inorganic Chemistry 2002, 41 (17), 4309-4311.
17. Lee, C. M.; Hsieh, C. H.; Dutta, A.; Lee, G. H.; Liaw, W. F., Oxygen binding to sulfur in nitrosylated iron-thiolate complexes: Relevance to the Fe-containing nitrile hydratases. Journal of the American Chemical Society 2003, 125 (38), 11492-11493.
18. Lu, M.; Campbell, J. L.; Chauhan, R.; Grapperhaus, C. A.; Chen, H., Probing the Reactivity and Radical Nature of Oxidized Transition Metal-Thiolate Complexes by Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2013, 24 (4), 502-512.
19. Lu, X. Y.; Li, X. X.; Lee, Y. M.; Jang, Y. R.; Seo, M. S.; Hong, S.; Cho, K. B.; Fukuzumi, S.; Nam, W., Electron-Transfer and Redox Reactivity of High-Valent Iron Imido and Oxo Complexes with the Formal Oxidation States of Five and Six. Journal of the American Chemical Society 2020, 142 (8), 3891-3904.
20. Mardyukov, A.; Schreiner, P. R., Generation and characterization of the phenylthiyl radical and its oxidation to the phenylthiylperoxy and phenylsulfonyl radicals. Physical Chemistry Chemical Physics 2016, 18 (37), 26161-26165.
21. Markovic, D.; Varela-Alvarez, A.; Sordo, J. A.; Vogel, P., Mechanism of the diphenyldisulfone-catalyzed isomerization of alkenes. Origin of the chemoselectivity: Experimental and quantum chemistry studies. Journal of the American Chemical Society 2006, 128 (24), 7782-7795.
22. McQuilken, A. C.; Jiang, Y. B.; Siegler, M. A.; Goldberg, D. P., Addition of Dioxygen to an N4S(thiolate) Iron(II) Cysteine Dioxygenase Model Gives a Structurally Characterized Sulfinato-Iron(II) Complex. Journal of the American Chemical Society 2012, 134 (21), 8758-8761.
23. Ouch, K.; Mashuta, M. S.; Grapperhaus, C. A., Metal-Stabilized Thiyl Radicals as Scaffolds for Reversible Alkene Addition via C-S Bond Formation/Cleavage. Inorganic Chemistry 2011, 50 (20), 9904-9914.
24. Ouch, K.; Mashuta, M. S.; Grapperhaus, C. A., Alkyne Addition to a Metal-Stabilized Thiyl Radical: Carbon-Sulfur Bond Formation between 1-Octyne and Ru(SP)(3) (+). European Journal of Inorganic Chemistry 2012, (3), 475-478.
25. Yan, J. A.; Chen, Y. S.; Chang, Y. H.; Tsai, C. Y.; Lyu, C. L., Luo, C. G., Lee, G. H., Hsu, H. F., Redox Interconversion of Non-Oxido Vanadium Complexes Accompanied by Acid-Base Chemistry of Thiol and Thiolate . Inorg. Chem. 2017, 56, 9055-9063.
26. Yan, J. A.; Yang, Z. K.; Chen, Y. S.; Chang, Y. H.; Lyu, C. L.; Luo, C. G.; Cheng, M. J.; Hsu, H. F., Activation of O-H and C-O Bonds in Water and Methanol by a Vanadium-Bound Thiyl Radical. Chemistry-a European Journal 2018, 24 (57), 15190-15194.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw