進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0708202011511900
論文名稱(中文) 電生成氧化筆芯電極同時偵測多巴胺及酪胺酸
論文名稱(英文) Electro-generation of oxidized pencil lead for simultaneous detection of dopamine and L-tyrosine
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 蕭翊淳
研究生(英文) Yi-Chun Xiao
學號 N36074241
學位類別 碩士
語文別 中文
論文頁數 132頁
口試委員 口試委員-何國川
口試委員-杜景順
口試委員-鄧熙聖
口試委員-林家裕
指導教授-楊明長
中文關鍵字 電生成氧化石墨  鉛筆芯  電化學感測器  多巴胺  酪胺酸 
英文關鍵字 Electro-generation of oxidized graphite  pencil lead  electrochemical sensor  dopamine  L-tyrosine 
學科別分類
中文摘要 酪胺酸(L-Tyrosine, TY)為人體中重要的胺基酸,亦為神經傳導物質多巴胺(Dopamine, DA)的前驅物,兩者皆影響著人類的神經思考系統與情緒管理因子,許多身心理疾病與它們的濃度習習相關,即時監測體內多巴胺與酪胺酸的濃度,益於早期預防精神與壓力疾病。採用電化學方法偵測多巴胺與酪胺酸為相對簡單、快速的感測方式。由於多巴胺在正常人尿液中濃度範圍為0~5 μΜ,酪胺酸濃度為0.39~1.5m M,其差距過大,發展出的感測器需具有較高的多巴胺靈敏度與較廣的酪胺酸偵測濃度範圍,且能同時避免抗壞血酸與尿酸的訊號干擾。
本研究以低成本且快速的方法,在磷酸中以循環伏安法在筆芯電極表面產生含氧官能基,藉此提升電極表面活性並大幅地增加多巴胺與酪胺酸之感測電流,修飾電極的多巴胺感測電流從原本裸電極的4.69 μA,提升為84.15μA;而酪胺酸電流則從32.8 μA提升為89.98 μA,經XPS儀器分析,電極表面產生三種含氧官能基C-OH、C = O、O = C-O;其中氧含量經EDS量測,從原來的1.68 %,增加為10.45 %,提升6.2倍。修飾後電極的黃血鹽反應速率常數經擬可逆參數圖及公式計算為 3.9×10-3( cm/s ),活性面積為6.2×10-3( cm2 ),分別為裸電極的5倍與2倍,經方波伏安法同時偵測多巴胺與酪胺酸時,多巴胺與干擾物尿酸電位差為141mV;酪胺酸與尿酸電位差為313 mV,彼此間無互相干擾。
本研究中,以0.05M磷酸 (pH 1.83)、循環伏安法的掃描範圍-0.3~2.2 V (vs. Ag/AgCl)、掃描速率50 mV/s、掃描7圈,所得的電生成氧化筆芯經方波伏安法(Square wave Voltammetry, SWV)結果顯示,此條件可得最高的多巴胺靈敏度18.79 μA/μΜ,感測濃度範圍1~7 μΜ,偵測下限0.11 μΜ (S/N=3),此時,酪胺酸靈敏度0.934 μA/μΜ,感測濃度範圍30~ 200 μΜ,偵測下限5.54 μΜ ( S/N = 3 )。
英文摘要 A simple and low-cost method for simultaneous detection of dopamine (DA) and L-tyrosine (TY) in urine was performed with a graphite oxides modified graphite pencil electrode (GrO/GPE). Graphite-oxide (GrO) was directly generated by cyclic voltammetry (CV) on the surface of a GPE. The oxygen-containing functional groups enhanced the electroactive surface for oxidations of DA and TY. Several decisive preparation parameters were optimized for the highest sensitivity of DA and TY. The linear ranges foe detection with square wave voltammetry (SWV) were 1-7 μM and 30-200 μM for DA and TY, respectively. The lowest detection limits for DA and TY were 0.11μM and 5.54μM, respectively.
論文目次 目錄
摘要 I
致謝 XI
目錄 XII
圖目錄 XV
表目錄 XXI
第一章 緒論 1
1.1前言 1
1.2生物感測器 3
1.2.1生物感測器基本原理 3
1.2.2生物感測器起源 3
1.2.3 依生物元件分類感測器 4
1.2.3.1酵素 (enzyme) 4
1.2.3.2免疫物質 (immunoassay) 4
1.2.3.3核酸 (nucleic acid) 4
1.2.3.4組織 (tissue) 4
1.2.3.5非生物型 5
1.2.4依感測元件的結合方式分類生物感測器 5
1.2.4.1生物親合型感測器 5
1.2.4.2生物催化型感測器 5
1.2.5依轉換元件分類生物感測器 6
1.2.5.1電化學式生物感測器 6
1.2.5.2壓電晶體生物感測器 10
1.2.5.3光學生物感測器 11
1.2.5.4離子選擇性場效電晶體 11
1.2.5.5表面聲波感測器 12
1.3待測物質簡介 13
1.3.1酪胺酸 (L-Tyrosine) 13
1.3.2多巴胺 (Dopamine) 14
1.3.3酪胺酸、多巴胺感測原理 15
第二章 原理與文獻回顧 17
2-1電化學原理 17
2.1.1循環伏安分析原理 18
2.1.2方波伏安法 (square wave voltammetry, SWV) 23
2.2電極材料 28
2.2.1電極基材 28
2.2.1.1玻璃碳電極(glassy carbon electrode, GCE) 28
2.2.1.2網印碳電極(screen-printed carbon electrode, SPCE) 28
2.2.1.3石墨鉛筆芯電極(graphite pencil electrodes, GPE) 28
2.2.2.1奈米碳管 (carbon nanotubes, CNTs) 30
2.2.2.2石墨烯 (graphene) 31
2.2.2.3奈米複合碳材 31
2.2.2.4氧化石墨 ( Graphite oxide ) 32
2.3感測多巴胺與酪胺酸電極種類 32
2.3.1以奈米碳材修飾 32
2.3.2以高分子材料修飾 33
2.3.3以金屬奈米粒子修飾 33
2.4研究動機 33
第三章 實驗方法 35
3.1實驗藥品 35
3.2實驗儀器 36
3.3溶液配製 36
3.4電化學系統 37
3.4.1感測電極製備 37
3.4.1.1循環伏安法 (Cyclic voltammetry, CV) 38
3.4.1.2定電壓法 38
3.4.2電極之感測 38
3.4.2.1感測電極前處理 38
3.4.2.2循環伏安法(Cyclic voltammetry, CV) 38
3.4.2.3方波伏安法(square wave voltammetry, SWV) 39
3.4.2.4干擾物分析 39
3.4.3.5回復測試 (Recovery test) 39
3.4.2.6實際樣品測試 (Real sample test) 40
3.5筆芯之鑑定與分析 40
3.5.1掃描式電子顯微鏡分析(Scanning electron microscopy, SEM) 40
3.5.2能量散射光譜儀(Energy dispersive spectrometer, EDS) 40
3.5.3表面積分析(Surface area analyzer, BET) 40
3.5.4拉曼分析光譜(Raman spectroscopy) 41
3.5.5化學分析電子光譜儀(Electron spectroscopy for chemical analysis, ESCA or XPS ) 41
3.5.6電化學分析 42
3.5.6.1交流阻抗分析(AC impedance analysis) 42
3.5.6.2電極材料反應速率常數k0 42
第四章 結果與討論 43
4.1碳材對電化學活性的影響 43
4.1.1待測物電化學活性比較 43
4.1.2干擾物影響比較 45
4.1.3掃描式電子顯微鏡分析 (SEM)與表面積分析 (BET) 47
4.1.4交流阻抗分析 49
4.2不同型號之鉛筆芯的感測能力 52
4.3電生成氧化石墨(GrO)的電化學特性 54
4.3.1電化學可逆性探討 54
4.3.2 pH值對待測液電化學行為之影響 56
4.3.3電極之黃血鹽反應速率常數 (k0) 59
4.4循環伏安法製備參數探討 63
4.4.1磷酸的濃度對靈敏度之影響 64
4.4.2磷酸的pH值對靈敏度之影響 69
4.4.3掃描範圍之上限電壓 (Upper potential limit) 73
4.4.3.1掃描式電子顯微鏡分析( SEM )與能量散射光譜儀分析( EDS ) 73
4.4.3.2 XPS元素分析 77
4.4.3.3拉曼光譜分析 (Raman spectroscopy) 81
4.4.3.4多巴胺與酪胺酸之靈敏度 84
4.4.4掃描範圍之下限電壓( Lower limit )對靈敏度的影響 88
4.4.5掃描速率( Scanning rate )對靈敏度的影響 91
4.4.6掃描圈數( Scanning Cycle)對靈敏度的影響 95
4.5 定電壓法製備修飾電極 98
4.6不同製備方法之比較 101
4.7干擾物測試 104
4.7.1尿液中有機物與無機離子之干擾 104
4.7.2抗壞血酸(Ascorbic acid)之干擾 105
4.7.3尿酸(Uric acid)之干擾 110
4.8方波伏安法感測 (Square wave Voltammetry, SWV) 114
4.9 真實樣品測試 117
第五章 結論 121
參考文獻 123
附錄 131
參考文獻 [1] 楊穎鋒, "2020年生醫感測器市場大突破元年," 環球生技月刊, 2017.
[2] A. Walcarius and E. Sibottier, "Electrochemically‐Induced Deposition of Amine‐Functionalized Silica Films on Gold Electrodes and Application to Cu (II) Detection in (Hydro) Alcoholic Medium," Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, vol. 17, no. 19, pp. 1716-1726, 2005.
[3] X. Dai, O. Nekrassova, M. E. Hyde, and R. G. Compton, "Anodic stripping voltammetry of arsenic (III) using gold nanoparticle-modified electrodes," Analytical chemistry, vol. 76, no. 19, pp. 5924-5929, 2004.
[4] P. Mehrotra, "Biosensors and their applications – A review," Journal of Oral Biology and Craniofacial Research, vol. 6, no. 2, pp. 153-159, 2016.
[5] N. Verma and M. Singh, "Biosensors for heavy metals," Biometals, vol. 18, no. 2, pp. 121-129, 2005.
[6] C. Chen et al., "Recent advances in electrochemical glucose biosensors: a review," RSC Advances, vol. 3, no. 14, pp. 4473-4491, 2013.
[7] M. Baccarin, F. A. Santos, F. C. Vicentini, V. Zucolotto, B. C. Janegitz, and O. Fatibello-Filho, "Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples," Journal of Electroanalytical Chemistry, vol. 799, pp. 436-443, 2017.
[8] K. A. Giuliano and D. L. Taylor, "Fluorescent-protein biosensors: New tools for drug discovery," Trends in Biotechnology, vol. 16, no. 3, pp. 135-140, 1998.
[9] G. Liu, X. Mao, J. A. Phillips, H. Xu, W. Tan, and L. Zeng, "Aptamer−Nanoparticle Strip Biosensor for Sensitive Detection of Cancer Cells," Analytical Chemistry, vol. 81, no. 24, pp. 10013-10018, 2009.
[10] M. Sajid, M. K. Nazal, M. Mansha, A. Alsharaa, S. M. S. Jillani, and C. Basheer, "Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review," TrAC Trends in Analytical Chemistry, vol. 76, pp. 15-29, 2016.
[11] K.-Q. Deng, J.-h. Zhou, and X.-F. Li, "Direct electrochemical reduction of graphene oxide and its application to determination of L-tryptophan and L-tyrosine," Colloids and Surfaces B: Biointerfaces, vol. 101, pp. 183-188, 2013.
[12] P. Parkhey and S. V. Mohan, "Chapter 6.1 - Biosensing Applications of Microbial Fuel Cell: Approach Toward Miniaturization," in Microbial Electrochemical Technology, S. V. Mohan, S. Varjani, and A. Pandey Eds.: Elsevier, 2019, pp. 977-997.
[13] M. Cremer, "Über die Ursache der elektromotorischen Eigenschaften der Gewebe, zugleich ein Beitrag zur Lehre von polyphasischen Elektrolytke," R. Oldenbourg 1906.
[14] W. R. Heineman and W. B. Jensen, "Leland C. Clark Jr. (1918–2005)," Biosensors and Bioelectronics, vol. 21, no. 8, pp. 1403-1404, 2006.
[15] 許耀維、許梅娟, "生醫微檢測晶片," 化工技術, vol. Vol. 21, pp. 138-161, 2013.
[16] Brian Eggins, Biosensors an introduction, . John Wiley & son, 1996.
[17] R. Wilson and A. P. F. Turner, "Glucose oxidase: an ideal enzyme," Biosensors and Bioelectronics, vol. 7, no. 3, pp. 165-185, 1992.
[18] G. R. Marchesini, E. Meulenberg, W. Haasnoot, and H. Irth, "Biosensor immunoassays for the detection of bisphenol A," Analytica Chimica Acta, vol. 528, no. 1, pp. 37-45, 2005.
[19] J. Wang, "Electrochemical nucleic acid biosensors," Analytica Chimica Acta, vol. 469, no. 1, pp. 63-71, 2002.
[20] D. C. Wijesuriya and G. A. Rechnitz, "Biosensors based on plant and animal tissues," Biosensors and Bioelectronics, vol. 8, no. 3, pp. 155-160, 1993.
[21] P. Si, Y. Huang, T. Wang, and J. Ma, "Nanomaterials for electrochemical non-enzymatic glucose biosensors," RSC advances, vol. 3, no. 11, pp. 3487-3502, 2013.
[22] F. Scheller F. Schubert, Biosensors. Elsevier Science, 1991.
[23] R. S. Sethi, "Transducer aspects of biosensors," Biosensors and Bioelectronics, vol. 9, no. 3, pp. 243-264, 1994.
[24] P. Sistani, L. Sofimaryo, Z. R. Masoudi, A. Sayad, R. Rahimzadeh, and B. Salehi, "A penicillin biosensor by using silver nanoparticles," Int. J. Electrochem. Sci, vol. 9, pp. 6201-6212, 2014.
[25] A. Azadbakht, A. R. Abbasi, Z. Derikvand, and Z. Karimi, "The electrochemical behavior of Au/AuNPs/PNA/ZnSe-QD/ACA electrode towards CySH oxidation," Nano-Micro Letters, vol. 7, no. 2, pp. 152-164, 2015.
[26] S. Dzyadevych and N. Jaffrezic-Renault, "Conductometric biosensors," in Biological Identification: Elsevier, 2014, pp. 153-193.
[27] C. Barnes, C. d'Silva, J. Jones, and T. Lewis, "The theory of operation of piezoelectric quartz crystal sensors for biochemical application," Sensors and Actuators A: Physical, vol. 31, no. 1-3, pp. 159-163, 1992.
[28] A. S. Yuwono and P. S. Lammers, "Odor pollution in the environment and the detection instrumentation," Agricultural Engineering International: CIGR Journal, 2004.
[29] H. Sun and Y. Fung, "Piezoelectric quartz crystal sensor for rapid analysis of pirimicarb residues using molecularly imprinted polymers as recognition elements," Analytica chimica acta, vol. 576, no. 1, pp. 67-76, 2006.
[30] X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review," analytica chimica acta, vol. 620, no. 1-2, pp. 8-26, 2008.
[31] 謝振傑, "光纖生物感測器," 物理雙月刊, vol. 廿四卷, no. 四期, 2006.
[32] C.-S. Lee, S. K. Kim, and M. Kim, "Ion-sensitive field-effect transistor for biological sensing," Sensors, vol. 9, no. 9, pp. 7111-7131, 2009.
[33] L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proceedings of the London mathematical Society, vol. 1, no. 1, pp. 4-11, 1885.
[34] 黃仕泓、柯正浩, "表面聲波感測器之前瞻研究," 物理雙月刊, vol. 廿三卷, no. 六期, 2004.
[35] Y. Wang, Y. Li, L. Tang, J. Lu, and J. Li, "Application of graphene-modified electrode for selective detection of dopamine," Electrochemistry Communications, vol. 11, no. 4, pp. 889-892, 2009.
[36] T. Madrakian, E. Haghshenas, and A. Afkhami, "Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method," Sensors and Actuators B: Chemical, vol. 193, pp. 451-460, 2014.
[37] S. Hasoň, V. Ostatna, and M. Fojta, "Simultaneous voltammetric determination of free tryptophan, uric acid, xanthine and hypoxanthine in plasma and urine," Electrochimica Acta, vol. 329, p. 135132, 2020.
[38] J. Wang, "Electrochemical glucose biosensors," Chemical reviews, vol. 108, no. 2, pp. 814-825, 2008.
[39] J. Yu, L. Ge, J. Huang, S. Wang, and S. Ge, "Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid," Lab on a Chip, vol. 11, no. 7, pp. 1286-1291, 2011.
[40] W. Li et al., "Pyridine functionalized carbon dots for specific detection of tryptophan in human serum samples and living cells," Microchemical Journal, vol. 154, p. 104579, 2020.
[41] J. Li et al., "Electrochemical tyrosine sensor based on a glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes," Microchimica Acta, vol. 180, no. 1-2, pp. 49-58, 2013.
[42] H. Beitollahi and F. Garkani Nejad, "Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode," Electroanalysis, vol. 28, no. 9, pp. 2237-2244, 2016.
[43] Q. Xu and S.-F. Wang, "Electrocatalytic oxidation and direct determination of L-tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes," Microchimica Acta, vol. 151, no. 1-2, pp. 47-52, 2005.
[44] N. Baig and A.-N. Kawde, "A novel, fast and cost effective graphene-modified graphite pencil electrode for trace quantification of l-tyrosine," Analytical Methods, vol. 7, no. 22, pp. 9535-9541, 2015.
[45] M. Arvand and T. M. Gholizadeh, "Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals," Colloids and Surfaces B: Biointerfaces, vol. 103, pp. 84-93, 2013.
[46] F. Tian, H. Li, M. Li, C. Li, Y. Lei, and B. Yang, "A tantalum electrode coated with graphene nanowalls for simultaneous voltammetric determination of dopamine, uric acid, L-tyrosine, and hydrochlorothiazide," Microchimica Acta, vol. 184, no. 6, pp. 1611-1619, 2017.
[47] F. Maggi and E. Daly, "Decomposition pathways and rates of human urine in soils," Journal of agricultural and food chemistry, vol. 61, no. 26, pp. 6175-6186, 2013.
[48] B. K. Swamy et al., "Simultaneous detection of dopamine, tyrosine and ascorbic acid using NiO/graphene modified graphite electrode," (in English), Biointerface Res. Appl. Chem., Article vol. 10, no. 3, pp. 5599-5609, Jun 2020, doi: 10.33263/briac103.599609.
[49] R. P. da Silva, A. W. O. Lima, and S. H. Serrano, "Simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid using a pyrolytic graphite electrode modified into dopamine solution," Analytica chimica acta, vol. 612, no. 1, pp. 89-98, 2008.
[50] N. M. Felitsyn, G. N. Henderson, M. O. James, and P. W. Stacpoole, "Liquid chromatography–tandem mass spectrometry method for the simultaneous determination of δ-ALA, tyrosine and creatinine in biological fluids," Clinica Chimica Acta, vol. 350, no. 1-2, pp. 219-230, 2004.
[51] M. S. Alonso, L. L. Zamora, and J. M. Calatayud, "Determination of tyrosine through a FIA-direct chemiluminescence procedure," Talanta, vol. 60, no. 2-3, pp. 369-376, 2003.
[52] M. Lee, H. Nohta, Y. Umegae, and Y. Ohkura, "Assay for tyrosine hydroxylase by high-performance liquid chromatography with fluorescence detection," Journal of Chromatography B: Biomedical Sciences and Applications, vol. 415, pp. 289-296, 1987.
[53] G. Neurauter et al., "Simultaneous measurement of phenylalanine and tyrosine by high performance liquid chromatography (HPLC) with fluorescence detection," Clinical Biochemistry, vol. 46, no. 18, pp. 1848-1851, 2013.
[54] C. Bayle, N. Siri, V. Poinsot, M. Treilhou, E. Caussé, and F. Couderc, "Analysis of tryptophan and tyrosine in cerebrospinal fluid by capillary electrophoresis and “ball lens” UV-pulsed laser-induced fluorescence detection," Journal of Chromatography A, vol. 1013, no. 1-2, pp. 123-130, 2003.
[55] Y. Huang, X. Jiang, W. Wang, J. Duan, and G. Chen, "Separation and determination of l-tyrosine and its metabolites by capillary zone electrophoresis with a wall-jet amperometric detection," Talanta, vol. 70, no. 5, pp. 1157-1163, 2006.
[56] G. J. Trachte, T. Uncini, and M. Hinz, "Both stimulatory and inhibitory effects of dietary 5-hydroxytryptophan and tyrosine are found on urinary excretion of serotonin and dopamine in a large human population," Neuropsychiatric Disease and Treatment, vol. 5, p. 227, 2009.
[57] NIDA., "Drugs and the Brain," National Institute on Drug Abuse, , 2020. [Online]. Available: https://www.drugabuse.gov/publications/drugs-brains-behavior-science-addiction/drugs-brain.
[58] D. Amin, "Titrimetric determination of catecholamines and related compounds via bromine oxidation and substitution," Analyst, vol. 111, no. 2, pp. 255-257, 1986.
[59] Y. Lin, C. Chen, C. Wang, F. Pu, J. Ren, and X. Qu, "Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag–catechol interaction," Chemical Communications, vol. 47, no. 4, pp. 1181-1183, 2011.
[60] V. Carrera, E. Sabater, E. Vilanova, and M. A. Sogorb, "A simple and rapid HPLC–MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: Application to the secretion of bovine chromaffin cell cultures," Journal of Chromatography B, vol. 847, no. 2, pp. 88-94, 2007.
[61] S. M. Ghoreishi, M. Behpour, M. Mortazavi, and A. Khoobi, "Fabrication of a graphene oxide nano-sheet modified electrode for determination of dopamine in the presence of tyrosine: a multivariate optimization strategy," Journal of Molecular Liquids, vol. 215, pp. 31-38, 2016.
[62] A. J. Bard and L. R. Faulkner, "Fundamentals and Applications, New York: Wiley, 2001," ed: Springer, 2002.
[63] 胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司, 2002.
[64] W. Zhang et al., "An electrochemical sensor for detecting triglyceride based on biomimetic polydopamine and gold nanocomposite," Journal of Materials Chemistry B, vol. 2, no. 48, pp. 8490-8495, 2014.
[65] P. Electrochemistry, "Methods, and Applications, edited by CMA Brett and AMO Brett," ed: Oxford University Press, New York, 1993.
[66] Z.-G. Liu and X.-J. Huang, "Voltammetric determination of inorganic arsenic," TrAC Trends in Analytical Chemistry, vol. 60, pp. 25-35, 2014.
[67] M. C. Sousa and J. W. Buchanan, "Observational models of graphite pencil materials," in Computer Graphics Forum, 2000, vol. 19, no. 1: Wiley Online Library, pp. 27-49.
[68] Á. Torrinha, C. G. Amorim, M. C. B. S. M. Montenegro, and A. N. Araújo, "Biosensing based on pencil graphite electrodes," Talanta, vol. 190, pp. 235-247, 2018.
[69] S. Devaramani, M. Sreeramareddygari, M. R. Reddy, and R. Thippeswamy, "Covalently Anchored p‐Aminobenzene Sulfonate Multilayer on a Graphite Pencil Lead Electrode: A Highly Selective Electrochemical Sensor for Dopamine," Electroanalysis, vol. 29, no. 5, pp. 1410-1417, 2017.
[70] H. T. Purushothama, Y. A. Nayaka, M. M. Vinay, P. Manjunatha, R. O. Yathisha, and K. V. Basavarajappa, "Pencil graphite electrode as an electrochemical sensor for the voltammetric determination of chlorpromazine," Journal of Science: Advanced Materials and Devices, vol. 3, no. 2, pp. 161-166, 2018.
[71] B. B. Prasad, R. Madhuri, M. P. Tiwari, and P. S. Sharma, "Electrochemical sensor for folic acid based on a hyperbranched molecularly imprinted polymer-immobilized sol–gel-modified pencil graphite electrode," Sensors and Actuators B: Chemical, vol. 146, no. 1, pp. 321-330, 2010.
[72] P. K. Duy, J.-R. Sohn, and H. Chung, "A mechanical pencil lead-supported carbon nanotube/Au nanodendrite structure as an electrochemical sensor for As (III) detection," Analyst, vol. 141, no. 20, pp. 5879-5885, 2016.
[73] Á. Torrinha, C. G. Amorim, M. C. Montenegro, and A. N. Araújo, "Biosensing based on pencil graphite electrodes," Talanta, vol. 190, pp. 235-247, 2018.
[74] J. K. Kariuki, "An electrochemical and spectroscopic characterization of pencil graphite electrodes," Journal of the Electrochemical Society, vol. 159, no. 9, p. H747, 2012.
[75] P. Masawat, S. Liawruangrath, Y. Vaneesorn, and B. Liawruangrath, "Design and fabrication of a low-cost flow-through cell for the determination of acetaminophen in pharmaceutical formulations by flow injection cyclic voltammetry," Talanta, vol. 58, no. 6, pp. 1221-1234, 2002.
[76] S. Buratti, M. Scampicchio, G. Giovanelli, and S. Mannino, "A low-cost and low-tech electrochemical flow system for the evaluation of total phenolic content and antioxidant power of tea infusions," Talanta, vol. 75, no. 1, pp. 312-316, 2008.
[77] V. N. Popov, "Carbon nanotubes: properties and application," Materials Science and Engineering: R: Reports, vol. 43, no. 3, pp. 61-102, 2004.
[78] 李明洋、唐九君, "石墨烯的量子霍爾效應與弱局域效應," 物理雙月刊, vol. 33卷, no. 2, 2011.
[79] K. S. Novoselov et al., "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, no. 5696, p. 666, 2004. [Online]. Available:
.
[80] 陳韋任、沈銘原, "含奈米管之碳/碳複合材料之機械性質影響," 中華民國尖端材料科技協會, vol. 52期.
[81] 王鼎翔、呂明生、張守一, "先進奈米複合碳材料之未來發展與應用趨勢," 材料世界網, 2016.
[82] 蘇清源, "石墨烯氧化物之特性與應用前景," 物理雙月刊, vol. 33卷, no. 2期, 2011.
[83] W. S. Hummers and R. E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society, vol. 80, no. 6, pp. 1339-1339, 1958.
[84] Y. Li, J. Du, J. Yang, D. Liu, and X. Lu, "Electrocatalytic detection of dopamine in the presence of ascorbic acid and uric acid using single-walled carbon nanotubes modified electrode," Colloids and Surfaces B: Biointerfaces, vol. 97, pp. 32-36, 2012.
[85] J. Huang, Y. Liu, H. Hou, and T. You, "Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode," Biosensors and Bioelectronics, vol. 24, no. 4, pp. 632-637, 2008.
[86] W. Zhu, T. Chen, X. Ma, H. Ma, and S. Chen, "Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode," Colloids and Surfaces B: Biointerfaces, vol. 111, pp. 321-326, 2013.
[87] A. El‐Beqqali, A. Kussak, and M. Abdel‐Rehim, "Determination of dopamine and serotonin in human urine samples utilizing microextraction online with liquid chromatography/electrospray tandem mass spectrometry," Journal of separation science, vol. 30, no. 3, pp. 421-424, 2007.
[88] 詹雅云, "中空含氮碳材修飾電極應用於同時偵測抗壞血酸、多巴胺及尿酸之研究," 國立成功大學化學工程學系碩士論文, 2015.
[89] L. J. Hardwick et al., "An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite," Electrochimica Acta, vol. 52, no. 2, pp. 675-680, 2006.
[90] M. S. Dresselhaus and G. Dresselhaus, "Intercalation compounds of graphite," Advances in physics, vol. 51, no. 1, pp. 1-186, 2002.
[91] Z. Y. Xia et al., "The exfoliation of graphene in liquids by electrochemical, chemical, and sonication‐assisted techniques: A nanoscale study," Advanced Functional Materials, vol. 23, no. 37, pp. 4684-4693, 2013.
[92] A. Özcan and Y. Şahin, "Selective and sensitive voltammetric determination of dopamine in blood by electrochemically treated pencil graphite electrodes," Electroanalysis, vol. 21, no. 21, pp. 2363-2370, 2009.
[93] R. C. Engstrom, "Electrochemical pretreatment of glassy carbon electrodes," Analytical Chemistry, vol. 54, no. 13, pp. 2310-2314, 1982.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw