進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0708201917201800
論文名稱(中文) 拓樸絕緣體Sb2Te3/Bi2Te3異質結構光電性質研究與光偵測器應用
論文名稱(英文) Characterizations of Topological Sb2Te3/Bi2Te3 Heterostructures and the application for photodetector
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 107
學期 2
出版年 108
研究生(中文) 陳建睿
研究生(英文) Jian-Ruei Chen
學號 L76061016
學位類別 碩士
語文別 中文
論文頁數 95頁
口試委員 指導教授-曾盛豪
共同指導教授-黃榮俊
口試委員-許華書
中文關鍵字 拓樸絕緣體  表面態  異質結構  p-n junction  光偵測器 
英文關鍵字 Topological Insulator  heterostructure  p-n junction  surface state  photodetector 
學科別分類
中文摘要 本實驗以MBE系統在sapphire (0001)基板成長三維拓樸絕緣體Sb2Te3與Bi2Te3,並進一步將其成長為Sb2Te3/Bi2Te3雙層異質結構,拓樸具有絕緣的體能態與導電的表面態,為了更深入研究表面態的傳輸行為與元件的潛力,需要將fermi level 由價帶調控至dirac point附近,此時表面態(surface state)將取代體態(bulk state)成為傳輸主導。要達成這個目的Sb2Te3/Bi2Te3雙層異質結構是個好方法,兩者結構、晶格常數接近,成長上較容易,所以首先我們進行樣品成長的研究,並以多種儀器檢驗成長品質。
接著要驗證fermi level與surface state關係需藉由ARPES進行分析,分析過程中的確fermi level達到dirac point,但因為ARPES只能分析表面無法分析樣品整體,所以需做hall bar元件並以霍爾量測檢測其電性,因Sb2Te3/Bi2Te3兩者分別為n/p-type,隨厚度的調控可使兩者相互擴散在介面處形成三元合金,並調控fermi level位置,在整體carrier type轉變的時候,即為fermi level最接近dirac point的厚度。
另一方面,在光偵測器元件的量測上,原本拓樸絕緣體因為能隙極小,缺乏阻止載體快速復合的障礙,所以難以量測其光學性質,不過Sb2Te3/Bi2Te3異質結構會在介面處形成p-n junction,可有效抑制照光時產生的電子電洞對複合,而在調控厚度進行電性量測實驗中,carrier type轉變的同時,此厚度應會有最大的空乏區產生,而其產生的內建電場將有效使光電流提升,可有效提升拓樸絕緣體在光學上的應用價值,而本實驗也成功證實在電性量測上的carrier type轉變位置,即為光學量測上光響應最大值的所在。
英文摘要 In this research. We grow Sb2Te3/Bi2Te3 heterostructure on sapphire (0001) substrate by the MBE system. At the interface, diffusion of Sb and Bi causes the ternary compounds and tuning fermi level. By adjusting the thickness ,we can tuning Fermi level to the dirac point and form an ideal topological insulator. We confirmed this result through ARPES and hall measurements.
In Hall measurement, carrier type transition occurs between 7/10nm and 8/10nm. The change of carrier type also appeared in ARPES measurement. At this time, Surface state replaces bulk state as the main contributor to carrier transport.
On the other hand, Sb2Te3/Bi2Te3 heterostructure has a p-n junction at the interface. The built-in potential at the interface can effectively separate the electron-hole pairs in TI and suppress the rapid recombination of carriers, leading to an outstanding photo responsivity.
At the same time as the carrier type changes, the largest depletion region will occur at the interface. This can effectively separate the electron-hole pairs , and lead to the maximum photo responsivity.
Finally, we obtain maximum responsivity of the photodetector measured under 632.8 nm light illumination at 7/10 nm Sb2Te3/Bi2Te3. The photodetector possessed a large light responsivity of 167 A/W. The result of photodetector measurement correlates with the conclusion of Hall measurement.
論文目次 摘要 I
目錄 X
圖目錄 XIII
表目錄 XVII
第一章 緒論 1
1-1 拓樸介紹 2
1-2 文獻回顧 5
1-2-1 Two-step growth of high quality Bi2Te3 thin films on Al2O3 (0001) by molecular beam epitaxy [9] 5
1-2-2 Atomically smooth ultrathin films of topological insulator Sb2Te3 [10] 7
1-2-3 P − N Junctions in Ultrathin Topological Insulator Sb2Te3 /Bi 2Te3 Heterostructures Grown by Molecular Beam Epitaxy [11] 10
1-2-4 High-Responsivity, High-Detectivity, Ultrafast Topological Insulator Bi2Se3 /Silicon Heterostructure Broadband Photodetectors [3] 13
1-3 研究動機 19
第二章 實驗儀器 20
2-1 分子束磊晶系統(MBE) 20
2-1-1儀器介紹 21
2-2 微影製成系統 26
2-2-1 旋轉徒步儀(Spin Coater) 26
2-2-2 雙面對準曝光機 (Double-side Mask Aligner) 26
2-2-3反應離子蝕刻機 (Reactive Ion Etcher;RIE) 27
2-2-4 電子束蒸鍍機 (E-beam Evaporator) 27
2-3 量測分析系統 28
2-3-1 X-ray 繞射分析儀 (X-ray diffraction;XRD) 28
2-3-2 原子力顯微鏡 (Atomic Force Microscopy;AFM) 29
2-3-3 X射線電子能譜儀(X-ray photoelectron spectroscopy ) 30
2-3-4 角分辨電子能譜(ARPES ) 30
2-3-5穿透式電子顯微鏡(Transmission electron microscope ) 31
第三章 基本原理與實驗流程 32
3-1 薄膜成長原理 32
3-1-1 薄膜沉積 32
3-1-2 薄膜成長模式 32
3-1-2 晶格匹配度 34
3-2 電性相關理論 34
3-2-1 四點電性量測 34
3-2-2 霍爾效應 (Hall effect) [20] 35
3-3 光偵測器相關理論 37
3-3-1 本徵吸收 (Intrinsic absorption) 37
3-3-2 p-n junction 37
3-2-3 光生伏特效應 (Photovoltaic effect) 38
3-2-4 光偵測器重要參數 39
3-4 實驗流程 40
3-4-1 拓樸絕緣體薄膜製成 40
3-4-2 Hall bar元件與Photodetector元件制備 41
3-4-3 Photodetector 元件量測系統 44
3-5 實驗架構 45
第四章 薄膜成長與材料分析 46
4-1 Bi2Te3的成長參數與品質分析 46
4-1-1 Bi2Te3的XRD圖與Rocking curve 分析 50
4-2 Sb2Te3的成長參數與品質分析 53
4-2-1 Sb2Te3的XRD圖與Rocking curve 分析 56
4-3 Sb2Te3/Bi2Te3雙層薄膜成長品質分析 59
4-3-1 Sb2Te3/Bi2Te3變溫成長品質分析 59
4-3-2 Sb2Te3/Bi2Te3變厚度成長品質分析 64
4-4 Sb2Te3/Bi2Te3薄膜NSRRC XRD 分析 70
4-5 Sb2Te3/Bi2Te3薄膜TEM分析 71
第五章 Bi2Te3/Sb2Te3薄膜電性與光學性質分析 73
5-1 ARPES分析 75
5-2 薄膜電性量測 78
5-2-1 Bi2Te3 & Sb2Te3 & Bi2Se3電性量測 78
5-2-2 Bi2Te3 /Sb2Te3 電性量測 79
5-3 Bi2Te3 /Sb2Te3 光學量測 82
5-3-1 Photo responsivity 82
5-4 多層薄膜成長 87
5-4-1 多層薄膜品質分析 87
5-4-2 多層薄膜電性分析 89
第六章 結論 91
參考文獻 93
參考文獻 [1] D. Hsieh et al., "A tunable topological insulator in the spin helical Dirac transport regime," Nature, vol. 460, no. 7259, p. 1101, 2009.
[2] M. Z. Hasan and C. L. Kane, "Colloquium: topological insulators," Reviews of modern physics, vol. 82, no. 4, p. 3045, 2010.
[3] H. Zhang, X. Zhang, C. Liu, S.-T. Lee, and J. Jie, "High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors," ACS nano, vol. 10, no. 5, pp. 5113-5122, 2016.
[4] 黃榮俊, "拓樸絕緣體之能帶結構、輸運性質與場效電晶體元件之介紹與研究," 物理雙月刊, 2017.
[5] 張泰榕, "拓樸材料與拓樸能帶理論," 物理雙月刊, 2017.
[6] Y. Ando, "Topological insulator materials," Journal of the Physical Society of Japan, vol. 82, no. 10, p. 102001, 2013.
[7] M. Brahlek, N. Koirala, N. Bansal, and S. Oh, "Transport properties of topological insulators: Band bending, bulk metal-to-insulator transition, and weak anti-localization," Solid State Communications, vol. 215, pp. 54-62, 2015.
[8] X.-L. Qi and S.-C. Zhang, "The quantum spin Hall effect and topological insulators," arXiv preprint arXiv:1001.1602, 2010.
[9] S. Harrison, S. Li, Y. Huo, B. Zhou, Y. Chen, and J. Harris, "Two-step growth of high quality Bi2Te3 thin films on Al2O3 (0001) by molecular beam epitaxy," Applied Physics Letters, vol. 102, no. 17, p. 171906, 2013.
[10] G. Wang et al., "Atomically smooth ultrathin films of topological insulator Sb 2 Te 3," Nano Research, vol. 3, no. 12, pp. 874-880, 2010.
[11] M. Lanius et al., "P–N junctions in ultrathin topological insulator Sb2Te3/Bi2Te3 heterostructures grown by molecular beam epitaxy," Crystal Growth & Design, vol. 16, no. 4, pp. 2057-2061, 2016.
[12] P. Maksym and J. L. Beeby, "A theory of RHEED," Surface Science, vol. 110, no. 2, pp. 423-438, 1981.
[13] G.-C. Wang and T.-M. Lu, "RHEED Reflection Mode," in RHEED Transmission Mode and Pole Figures: Thin Film and Nanostructure Texture Analysis. New York, NY: Springer New York, 2014, pp. 41-53.
[14] 林冠廷, "Epitaxial Grown and Characterizations of Topological P-N Junction in Sb2Te3/Bi2Te3 Heterostructures," 2016.
[15] D. L. Finzi, "Atomic force microscopy (AFM)," EMORY COLLEGE OF ARTS AND SCIENCES-Finzi/Dunlap, 2010.
[16] A. D. Palczewski, "Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors," Ames Laboratory (AMES), Ames, IA (United States), 2010.
[17] K. Acharjya, "Introduction to Electron Microscopy, Basic Introductory Idea, SEM & TEM, Basic Working Principles," Engineering, 2017.
[18] 洪連輝, "穿透式電子顯微鏡 (Transmission Electron Microscopy:TEM)," 現代科技簡介 Introductory Modern Technology, 2009.
[19] S. A. Chambers, "Epitaxial growth and properties of thin film oxides," Surface science reports, vol. 39, no. 5-6, pp. 105-180, 2000.
[20] S. M. Sze and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2006.
[21] 鐘亞宸, "Characteristics of MBE-grown Sb2Te3-Bi2Se3 heterostructures," 2017.
[22] 劉嘉怡, "Study of the photoelectric property of Cu/Cu2O composite thin film and the application for photodetector," 2018.
[23] C.-Z. Chang et al., "Growth of quantum well films of topological insulator Bi 2 Se 3 on insulating substrate," in Spin, 2011, vol. 1, no. 01: World Scientific, pp. 21-25.
[24] J. O. Jenkins, J. A. Rayne, and R. W. Ure, "Elastic Moduli and Phonon Properties of ${mathrm{Bi}}_{2}$ ${mathrm{Te}}_{3}$," Physical Review B, vol. 5, no. 8, pp. 3171-3184, 04/15/ 1972.
[25] 沈士育, "Studies of epitaxial structure and electric property of Bi2Se3 thin films," 2012.
[26] J. Wiese and L. Muldawer, "Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys," Journal of Physics and Chemistry of Solids, vol. 15, no. 1-2, pp. 13-16, 1960.
[27] G. Bendt et al., "Deposition of topological insulator Sb 2 Te 3 films by an MOCVD process," Journal of Materials Chemistry A, vol. 2, no. 22, pp. 8215-8222, 2014.
[28] Y. Takagaki, A. Giussani, K. Perumal, R. Calarco, and K.-J. Friedland, "Robust topological surface states in Sb 2 Te 3 layers as seen from the weak antilocalization effect," Physical Review B, vol. 86, no. 12, p. 125137, 2012.
[29] T. L. Anderson and H. B. Krause, "Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3-ySey compounds," Acta Crystallographica Section B, vol. 30, no. 5, pp. 1307-1310, 1974.
[30] F. Fei et al., "Solvothermal synthesis of lateral heterojunction Sb2Te3/Bi2Te3 nanoplates," Nano letters, vol. 15, no. 9, pp. 5905-5911, 2015.
[31] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, "Topological insulators in Bi 2 Se 3, Bi 2 Te 3 and Sb 2 Te 3 with a single Dirac cone on the surface," Nature physics, vol. 5, no. 6, p. 438, 2009.
[32] !!! INVALID CITATION !!! .
[33] G. Wang et al., "Topological insulator thin films of Bi2Te3 with controlled electronic structure," Advanced Materials, vol. 23, no. 26, pp. 2929-2932, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw