進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0708201915523100
論文名稱(中文) 藉由釔摻雜氧化鋅薄膜增強壓電性質於壓電型奈米發電機之研究
論文名稱(英文) Enhancement of piezoelectric properties of ZnO thin films by Yttrium doping for piezoelectric nanogenerators
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 鄭力誠
研究生(英文) Li-Cheng Cheng
學號 N56064428
學位類別 碩士
語文別 中文
論文頁數 86頁
口試委員 指導教授-黃肇瑞
共同指導教授-劉全璞
口試委員-齊孝定
口試委員-陳嘉勻
口試委員-盧鴻華
中文關鍵字 氧化鋅  釔摻雜氧化鋅薄膜  壓電係數  奈米發電機 
英文關鍵字 ZnO  Y doped ZnO  piezoelectric coefficient  piezoelectric nanogenerators 
學科別分類
中文摘要 隨著可攜式電子裝置的普及和尺寸的微小化,電源供應問題成為發展瓶頸,科學家們希望能直接從環境中獲取能源,因此開始研究奈米發電機的應用。奈米發電機是一種能夠直接將環境中的機械能轉換為電能的裝置,不僅對環境無害,能源的取得也相當容易。近年來奈米發電機的開發已有一定的基礎,未來將朝擴大應用範圍的目標前進。氧化鋅(zinc oxide, ZnO)是一種II-VI族的n型半導體,擁有直接且寬的能隙(約3.3 eV)、高的激子束縛能(室溫下約60 meV)與c軸優選成長取向之纖鋅礦結構。由於其獨特的光學與電學性質,氧化鋅被應用在許多電子元件上,如奈米發電機、光感測器、發光二極體及感測器等。
氧化鋅的壓電係數約為12.4 pm/V,文獻中有許多方法能提升其壓電係數,而最有效率的方法便是化學摻雜。化學摻雜能改變晶格結構中的不對稱性,使材料在受到外加應力的同時產生更強的壓電電位,進而提升壓電係數的表現。本實驗利用氧化鋅靶與氧化釔靶,透過磁控射頻濺鍍系統進行共濺鍍,在固定的基板溫度(250℃)與工作壓力(6×10-2 torr)下,藉由調控氧化釔靶的濺鍍功率沉積不同摻雜量的氧化鋅薄膜於矽基板上,並探討摻雜量對於薄膜壓電係數的影響,找出最佳壓電係數的薄膜用於開發壓電型奈米發電機。
實驗結果顯示,透過濺鍍功率的調整,確實能成功改變釔原子在氧化鋅內的濃度,而製備出的薄膜均呈現c軸成長優選取向之柱狀纖鋅礦結構,該結構有助於壓電係數的上升,而薄膜的結晶性亦隨微量的釔摻雜而提升;但隨著釔含量增加,薄膜開始出現不規則狀晶粒,結晶性也開始下降。釔原子的摻雜置換了鋅原子使晶格發生扭曲並造成薄膜內部應力。而原先不具備鐵電性質的氧化鋅也因釔原子佔據四面體中非中心位置導致其呈現鐵電性質,研究顯示鐵電材料的自發極化效應能大幅提高其壓電表現,使其壓電係數有明顯的上升。在比較釔含量與薄膜之壓電係數後可以發現:當釔含量約為1.6 a.t.%時,薄膜的壓電係數提高至49.6 pm/V,與未摻雜的氧化鋅相比高了4倍,證實元素的摻雜對於氧化鋅的壓電性質具有顯著的上升,而造成此結果的原因可大致歸類於晶格結構的改變與極性強化。將釔含量1.6 a.t.%的薄膜與純氧化鋅薄膜用於製作元件後,得到的輸出電壓、電流分別為0.012 V、45 nA與0.002 V、25nA,結果可發現不論是在輸出電壓或是輸出電流的表現上,釔摻雜氧化鋅薄膜之表現均優於純氧化鋅薄膜,且具備發展潛能。未來透過對薄膜加工處理及元件設計優化後,能再提升其輸出表現,並結合壓電電子、壓電光電子等效應後擴大應用範圍。
英文摘要 Wurtzite structure materials such as ZnO are considered to be the promising candidate for nanogenerators because of its unique properties. In this paper, we investigate the effect of yttrium(Y) doping on the piezoelectric coefficient of ZnO thin films synthesized on p-type Si (111) substrates via RF magnetron sputtering. XRD diffraction patterns show that all films presented ZnO wurtzite structure with c-axis preferential orientation and high crystallinity under small amount of yttrium doping. The chemical binding energy and composition of the thin films are measured by XPS, and the results confirm the substitution of zinc by yttrium. The electric hysteresis loop exhibits the ferroelectric property of Y doped ZnO thin films, which is the key to the enhancement of piezoelectric properties. The measurement of piezoelectric coefficient (d33) by PFM showing that Y doped ZnO thin films reach 49.6 pm/V at yttrium concentration is 1.6 a.t.%, which is higher than d33 of pure ZnO thin films. The Y doped ZnO based-nanogenetors present better output performance than that of ZnO based-nanogenerators, so it is considered that Y doped ZnO thin films have more potential to be developed on the field of nanogenerators.
論文目次 摘要 I
Extended Abstract III
致謝 XXI
總目錄 XXIII
表目錄 XXVI
圖目錄 XXVII
第一章、緒論 1
1.1. 前言 1
1.2. 研究動機與目的 3
第二章、文獻回顧 4
2.1. 濺鍍系統 4
2.1.1 濺鍍原理 4
2.1.2 射頻磁控濺鍍 9
2.2. 氧化鋅性質 11
2.2.1. 晶體結構 11
2.2.2. 物理性質 14
2.2.3. 本質缺陷 16
2.3. 壓電效應 21
2.3.1. 壓電材料 21
2.3.2. 壓電性 22
2.3.3. 鐵電性 24
2.3.4. 壓電電位與壓電極化 26
2.4. 釔摻雜氧化鋅 30
2.5. 壓電型奈米發電機 32
2.5.1. 永續能源之議題 32
2.5.2. 奈米發電機之原理及應用 35
第三章、研究方法與實驗步驟 40
3.1. 實驗流程圖 40
3.2. 實驗材料 41
3.3. 實驗設備 41
3.4. 濺鍍的步驟與條件 42
3.4.1. 基板前處理 42
3.4.2. 濺鍍流程 42
3.4.3. 元件製作 42
3.5. 薄膜性質分析與元件量測 45
3.5.1. 元素成分與化學鍵結分析 45
3.5.2. 晶體結構分析 45
3.5.3. 表面形貌與微結構分析 46
3.5.4. 電滯曲線分析 47
3.5.5. 壓電係數分析 47
3.5.6. 元件量測 47
第四章、實驗結果與討論 48
4.1. 元素成分與化學鍵結分析 48
4.2. 晶體結構分析 54
4.3. 表面形貌與微結構分析 57
4.4. 電滯曲線分析 62
4.5. 壓電係數分析 64
4.6. 元件量測 69
第五章、結論 76
參考文獻 78
參考文獻 [1] Ü. Özgür et al., "A comprehensive review of ZnO materials and devices," JOURNAL OF APPLIED PHYSICS, vol. 98, 2005.
[2] S. A. Wilson et al., "New materials for micro-scale sensors and actuators," Materials Science and Engineering: R: Reports, vol. 56, no. 1-6, pp. 1-129, 2007.
[3] Z. Shao and X. Li, "Direct-current piezoelectric nanogenerator based on p-Si/n-ZnO heterojunction," Physica E: Low-dimensional Systems and Nanostructures, vol. 77, pp. 44-47, 2016.
[4] C. Y. Liu, H. Y. Xu, Y. Sun, J. G. Ma, and Y. C. Liu, "ZnO ultraviolet random laser diode on metal copper substrate," Opt Express, vol. 22, no. 14, pp. 16731-7, Jul 14 2014.
[5] B. Xu, J.-L. Zhao, J.-M. Zhang, X.-W. Sun, F.-W. Zhuge, and X.-M. Li, "ZnO Nano-arrays on High Power Blue LED Chip for Enhanced Light Extraction Efficiency," Journal of Inorganic Materials, vol. 27, no. 7, pp. 716-720, 2012.
[6] N. AL-HARDAN, M. J. ABDULLAH, A. A. AZIZ, and H. AHMAD, "ZnO Gas Sensor for Testing Vinegar Acid Concentrations," Sains Malaysiana, vol. 40, no. 1, pp. 67-70, 2011.
[7] K. Higaki et al., "High Power Durability of Diamond Surface Acoustic Wave Filter " IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44, no. 6, pp. 1395-1400, 1997.
[8] X. L. Zhang, K. S. Hui, and K. N. Hui, "High photo-responsivity ZnO UV detectors fabricated by RF reactive sputtering," Materials Research Bulletin, vol. 48, no. 2, pp. 305-309, 2013.
[9] Q. Wang, D. Yang, Y. Qiu, X. Zhang, W. Song, and L. Hu, "Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices," Applied Physics Letters, vol. 112, no. 6, p. 063906, 2018.
[10] M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi, and N. Kawahara, "Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering," Adv Mater, vol. 21, no. 5, pp. 593-6, Feb 2 2009.
[11] Y. Y. Chen, C. H. Wang, G. S. Chen, Y. C. Li, and C.-P. Liu, "Self-powered n-Mg x Zn 1-x O/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect," Nano Energy, vol. 11, pp. 533-539, 2015.
[12] J. Wu et al., "Small band gap bowing in In1−xGaxN alloys," Applied Physics Letters, vol. 80, no. 25, pp. 4741-4743, 2002.
[13] W. F. Yang, B. Liu, R. Chen, L. M. Wong, S. J. Wang, and H. D. Sun, "Pulsed laser deposition of high-quality ZnCdO epilayers and ZnCdO/ZnO single quantum well on sapphire substrate," Applied Physics Letters, vol. 97, no. 6, p. 061911, 2010.
[14] V. Bhosle, A. Tiwari, and J. Narayan, "Electrical properties of transparent and conducting Ga doped ZnO," Journal of Applied Physics, vol. 100, no. 3, p. 033713, 2006.
[15] J. C. Fan, K. M. Sreekanth, Z. Xie, S. L. Chang, and K. V. Rao, "p-Type ZnO materials: Theory, growth, properties and devices," Progress in Materials Science, vol. 58, no. 6, pp. 874-985, 2013.
[16] Y. C. Yang, C. Song, F. Zeng, F. Pan, Y. N. Xie, and T. Liu, "V5+ ionic displacement induced ferroelectric behavior in V-doped ZnO films," Applied Physics Letters, vol. 90, no. 24, p. 242903, 2007.
[17] S. Goel, N. Sinha, H. Yadav, A. J. Joseph, and B. Kumar, "2D porous nanosheets of Y-doped ZnO for dielectric and ferroelectric applications," Journal of Materials Science: Materials in Electronics, vol. 29, no. 16, pp. 13818-13832, 2018.
[18] P. Sigmund, "Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets," Physical Review, vol. 184, no. 2, pp. 383-416, 1969.
[19] D. E. Harrison, "Theory of the Sputtering Process," Physical Review, vol. 102, no. 6, pp. 1473-1480, 1956.
[20] K. H. Kingdon and I. Langmuir, "The Removal of Thorium from the Surface of a Thoriated Tungsten Filament by Positive Ion Bombardment," Physical Review, vol. 22, no. 2, pp. 148-160, 1923.
[21] E. B. Henschke, "New Collision Theory of Cathode Sputtering of Metals at Low Ion Energies," Physical Review, vol. 106, no. 4, pp. 737-753, 1957.
[22] M. Ohring, 2nd, Ed. Materials Science of Thin Films. Academic Press, 2001.
[23] T. Kawaharamura, "Physics on development of open-air atmospheric pressure thin film fabrication technique using mist droplets: Control of precursor flow," Japanese Journal of Applied Physics, vol. 53, no. 5S1, p. 05FF08, 2014.
[24] S. Hussain et al., "Synthesis and characterization of large-area and continuous MoS2 atomic layers by RF magnetron sputtering," Nanoscale, vol. 8, no. 7, pp. 4340-7, Feb 21 2016.
[25] R. Bosco, J. Van Den Beucken, S. Leeuwenburgh, and J. Jansen, "Surface Engineering for Bone Implants: A Trend from Passive to Active Surfaces," Coatings, vol. 2, no. 3, pp. 95-119, 2012.
[26] P. J. Kelly and R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, vol. 56, pp. 159-172, 2000.
[27] C. Pan et al., "Progress in Piezo-Phototronic-Effect-Enhanced Light-Emitting Diodes and Pressure Imaging," Adv Mater, vol. 28, no. 8, pp. 1535-52, Feb 24 2016.
[28] A. Janotti and C. G. Van de Walle, "Fundamentals of zinc oxide as a semiconductor," Reports on Progress in Physics, vol. 72, no. 12, p. 126501, 2009.
[29] A. Janotti and C. G. Van de Walle, "Native point defects in ZnO," Physical Review B, vol. 76, no. 16, 2007.
[30] S. Brahma, J. Khatei, S. Sunkara, K. Y. Lo, and S. A. Shivashankar, "Self-assembled ZnO nanoparticles on ZnO microsheet: ultrafast synthesis and tunable photoluminescence properties," Journal of Physics D: Applied Physics, vol. 48, no. 22, p. 225305, 2015.
[31] Y. Liu, S. Niu, Q. Yang, B. D. Klein, Y. S. Zhou, and Z. L. Wang, "Theoretical study of piezo-phototronic nano-LEDs," Adv Mater, vol. 26, no. 42, pp. 7209-16, Nov 12 2014.
[32] A. Onodera, "Novel Ferroelectricity in II-VI Semiconductor ZnO," Ferroelectrics, vol. 267, no. 1, pp. 131-137, 2010.
[33] H. IWANAGA, A. KUNISHIGE, and S. TAKEUCHI, "Anisotropic thermal expansion in wurtzite-type crystals," JOURNAL OF MATERIALS SCIENCE, vol. 35, pp. 2451-2454, 2000.
[34] M.-H. Zhao, Z.-L. Wang, and S. X. Mao, "Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope," Nano Letters, vol. 4, no. 4, pp. 587-590, 2004.
[35] J. A. Christman, R. R. Woolcott, A. I. Kingon, and R. J. Nemanich, "Piezoelectric measurements with atomic force microscopy," Applied Physics Letters, vol. 73, no. 26, pp. 3851-3853, 1998.
[36] J. Curie and P. Curie, "Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées," Bulletin de la Société minéralogique de France, vol. 3, no. 4, pp. 90-93, 1880.
[37] W. Voigt, Lehrbuch der kristallphysik: (mit ausschluss der kristalloptik). B.G. Teubner, 1910.
[38] X. Zhu, "Piezoelectric ceramic materials: Processing, properties, characterization, and applications," Nova Science Publishers, Inc., 2009.
[39] D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, and M. Liu, "Strategies to achieve high performance piezoelectric nanogenerators," Nano Energy, vol. 55, pp. 288-304, 2019.
[40] O. Ambacher et al., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, 1999.
[41] Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," Journal of Physics: Condensed Matter, vol. 16, no. 25, pp. R829-R858, 2004.
[42] H. Khanbareh, Expanding the Functionality of Piezo-Particulate Composites. 2016.
[43] Z. L. Wang et al., "Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces," Advanced Functional Materials, vol. 14, no. 10, pp. 943-956, 2004.
[44] F. R. Fan, W. Tang, and Z. L. Wang, "Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics," Adv Mater, vol. 28, no. 22, pp. 4283-305, Jun 2016.
[45] P.-K. Chang and Y.-C. Chen, "The study of BZT thin film deposited on ITO substrate by RF magnetron sputtering," Department of Electrical Engineering, National Sun Yat-Sen University, 2017.
[46] N. Izyumskaya, Y. I. Alivov, S. J. Cho, H. Morkoç, H. Lee, and Y. S. Kang, "Processing, Structure, Properties, and Applications of PZT Thin Films," Critical Reviews in Solid State and Materials Sciences, vol. 32, no. 3-4, pp. 111-202, 2007.
[47] G. H. Haertling, "Ferroelectric Ceramics: History and Technology," JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 82, no. 4, pp. 797-818, 1999.
[48] N. Setter et al., "Ferroelectric thin films: Review of materials, properties, and applications," Journal of Applied Physics, vol. 100, no. 5, p. 051606, 2006.
[49] Z. Gao et al., "Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor," J Appl Phys, vol. 105, no. 11, p. 113707, Jun 1 2009.
[50] R. Yu, S. Niu, C. Pan, and Z. L. Wang, "Piezotronic effect enhanced performance of Schottky-contacted optical, gas, chemical and biological nanosensors," Nano Energy, vol. 14, pp. 312-339, 2015.
[51] C. Tang, M. J. Spencer, and A. S. Barnard, "Activity of ZnO polar surfaces: an insight from surface energies," Phys Chem Chem Phys, vol. 16, no. 40, pp. 22139-44, Oct 28 2014.
[52] C. R. Bowen, H. A. Kim, P. M. Weaver, and S. Dunn, "Piezoelectric and ferroelectric materials and structures for energy harvesting applications," Energy Environ. Sci., vol. 7, no. 1, pp. 25-44, 2014.
[53] J. Tichý, J. r. Erhart, E. Kittinger, and J. Pˇrívratská, Fundamentals of Piezoelectric Sensorics- Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials. Springer, 2010.
[54] L. Huo, D. Chen, Q. Kong, H. Li, and G. Song, "Smart washer—a piezoceramic-based transducer to monitor looseness of bolted connection," Smart Materials and Structures, vol. 26, no. 2, p. 025033, 2017.
[55] R. E. Eitel, "NOVEL PIEZOELECTRIC CERAMICS- DEVELOPMENT OF HIGH TEMPERATURE, HIGH PERFORMANCE PIEZOELECTRICS ON THE BASIS OF STRUCTURE," Department of Materials Science and Engineering, The Pennsylvania State University, 2003.
[56] M. Scarafagio et al., "Ultrathin Eu- and Er-Doped Y2O3 Films with Optimized Optical Properties for Quantum Technologies," The Journal of Physical Chemistry C, vol. 123, no. 21, pp. 13354-13364, 2019.
[57] H. Schumann and I. L. Fedushkin, Scandium, Yttrium & The Lanthanides: Organometallic Chemistry. 2006.
[58] S. Delice, M. Isik, and N. M. Gasanly, "Effect of heating rate on thermoluminescence characteristics of Y2O3 nanoparticles," Journal of Luminescence, vol. 212, pp. 233-237, 2019.
[59] N. Sinha et al., "Y-doped ZnO nanosheets: Gigantic piezoelectric response for an ultra-sensitive flexible piezoelectric nanogenerator," Ceramics International, vol. 44, no. 7, pp. 8582-8590, 2018.
[60] K. ABDALLA, "ENERGY POLICIES AND SUSTAINABLE DEVELOPMENT," INTERNATIONAL JOURNAL OF GLOBAL ENERGY ISSUES, vol. 4, pp. 270-274, 1992.
[61] P. Glynne-Jones and N. M. White, "Self-powered systems: a review of energy sources," Sensor Review, vol. 21, pp. 91-97, 2001.
[62] Z. L. Wang, "Nanogenerators and Nanopiezotronics," presented at the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 2007.
[63] Y. Hu and Z. L. Wang, "Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors," Nano Energy, vol. 14, pp. 3-14, 2015.
[64] Z. L. Wang and J. Song, "Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays," Science2006, vol. 312.
[65] M. Umeda, K. Nakamura, and S. Ueha, "Energy Storage Characteristics of a Piezo-Generator using Impact Induced Vibration," Japanese Journal of Applied Physics, vol. 26, no. Part 1, No. 5B, pp. 3146-3151, 1997.
[66] F.-R. Fan, Z.-Q. Tian, and Z. Lin Wang, "Flexible triboelectric generator," Nano Energy, vol. 1, no. 2, pp. 328-334, 2012.
[67] Y. Yang et al., "Pyroelectric nanogenerators for harvesting thermoelectric energy," Nano Lett, vol. 12, no. 6, pp. 2833-8, Jun 13 2012.
[68] Y. Zi et al., "Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing," Adv Mater, vol. 27, no. 14, pp. 2340-7, Apr 8 2015.
[69] Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, and Z. L. Wang, "Self-powered system with wireless data transmission," Nano Lett, vol. 11, no. 6, pp. 2572-7, Jun 8 2011.
[70] Z. L. Wang, X. Wang, J. Song, J. Liu, and Y. Gao, "Piezoelectric Nanogenerators for Self-Powered Nanodevices," IEEE Pervasive Computing vol. 7, no. 1, pp. 49-55, 2008.
[71] G. Mantini, Y. Gao, A. D’Amico, C. Falconi, and Z. L. Wang, "Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire," Nano Research, vol. 2, no. 8, pp. 624-629, 2009.
[72] R. Tao, G. Ardila, L. Montès, and M. Mouis, "Modeling of semiconducting piezoelectric nanowires for mechanical energy harvesting and mechanical sensing," Nano Energy, vol. 14, pp. 62-76, 2015.
[73] J. Liu et al., "Carrier Density and Schottky Barrier on the Performance of DC Nanogenerator," NANO LETTERS, vol. 8, no. 1, pp. 328-332, 2008.
[74] H.-J. Shin et al., "Control of Electronic Structure of Graphene by Various Dopants and Their Effects on a Nanogenerator," J. Am. Chem. Soc., vol. 132, pp. 15603-15609, 2010.
[75] B. Kumar and S.-W. Kim, "Recent advances in power generation through piezoelectric nanogenerators," Journal of Materials Chemistry, vol. 21, no. 47, p. 18946, 2011.
[76] C.-H. Wang et al., "Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration," Advanced Energy Materials, vol. 4, no. 16, p. 1400392, 2014.
[77] B. Kumar and S.-W. Kim, "Energy harvesting based on semiconducting piezoelectric ZnO nanostructures," Nano Energy, vol. 1, no. 3, pp. 342-355, 2012.
[78] H.-K. Park et al., "Charge-Generating Mode Control in High-Performance Transparent Flexible Piezoelectric Nanogenerators," Advanced Functional Materials, vol. 21, no. 6, pp. 1187-1193, 2011.
[79] M. Kumar, H. Jeong, A. Kumar, B. P. Singh, and D. Lee, "Magnetron-sputtered high performance Y-doped ZnO thin film transistors fabricated at room temperature," Materials Science in Semiconductor Processing, vol. 71, pp. 204-208, 2017.
[80] J. H. Park et al., "Analysis of oxygen vacancy in Co-doped ZnO using the electron density distribution obtained using MEM," Nanoscale Res Lett, vol. 10, p. 186, 2015.
[81] Y.-R. Luo, "Bond Dissociation Energies," ed, 2009.
[82] J. F. Moulder, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation, 1992.
[83] D. P.Drolet, D. M.Manuta, A. J.Lees, A.D.Katnani, and G. J.Coyle, "FT-IR and XPS study of copper(II) complexes of imidazole and benzimidazole," Inorganica Chimica Acta, vol. 146, no. 2, pp. 173-180, 1988.
[84] S. Heo et al., "Effects of Y contents on surface, structural, optical, and electrical properties for Y-doped ZnO thin films," Thin Solid Films, vol. 558, pp. 27-30, 2014.
[85] G. Turgut, S. Duman, and E. F. Keskenler, "The influence of Y contribution on crystallographic, topographic and optical properties of ZnO: A heterojunction diode application," Superlattices and Microstructures, vol. 86, pp. 363-371, 2015.
[86] S. K. Sharma and D. Y. Kim, "Microstructure and Optical Properties of Yttrium-doped Zinc Oxide (YZO) Nanobolts Synthesized by Hydrothermal Method," Journal of Materials Science & Technology, vol. 32, no. 1, pp. 12-16, 2016.
[87] S. Goel, N. Sinha, H. Yadav, A. J. Joseph, and B. Kumar, "Experimental investigation on the structural, dielectric, ferroelectric and piezoelectric properties of La doped ZnO nanoparticles and their application in dye-sensitized solar cells," Physica E: Low-dimensional Systems and Nanostructures, vol. 91, pp. 72-81, 2017.
[88] M. A. Lahmer, "The effect of doping with rare earth elements (Sc, Y, and La) on the stability, structural, electronic and photocatalytic properties of the O-terminated ZnO surface; A first-principles study," Applied Surface Science, vol. 457, pp. 315-322, 2018.
[89] J. H. Choi, H. Tabata, and T. Kawai, "Initial preferred growth in zinc oxide thin films on Si andamorphous substrates by a pulsed laser deposition," Journal of Crystal Growth vol. 226, pp. 493-500, 2001.
[90] S. Yu and L. Yu, "Effects of fatigue and damage on the hysteresis loops of ferroelectric ceramics," Microsystem Technologies, vol. 15, no. 1, pp. 33-38, 2008.
[91] Y. C. Yang, C. Song, X. H. Wang, F. Zeng, and F. Pan, "Cr-substitution-induced ferroelectric and improved piezoelectric properties of Zn1−xCrxO films," Journal of Applied Physics, vol. 103, no. 7, p. 074107, 2008.
[92] M. Laurenti, M. Castellino, D. Perrone, A. Asvarov, G. Canavese, and A. Chiolerio, "Lead-free piezoelectrics: V(3+) to V(5+) ion conversion promoting the performances of V-doped Zinc Oxide," Sci Rep, vol. 7, p. 41957, Feb 6 2017.
[93] J. T. Luo, X. Y. Zhu, G. Chen, F. Zeng, and F. Pan, "Influence of the Mn concentration on the electromechanical response d33 of Mn-doped ZnO films," physica status solidi (RRL) - Rapid Research Letters, vol. 4, no. 8-9, pp. 209-211, 2010.
[94] Y. Chen, J. Liu, J. Yu, Y. Guo, and Q. Sun, "Symmetry-breaking induced large piezoelectricity in Janus tellurene materials," Phys Chem Chem Phys, vol. 21, no. 3, pp. 1207-1216, Jan 17 2019.
[95] I. IZZUDDIN, M. H. H. JUMALI, Z. ZALITA, J. N. HUWAIDA, and R. AWANG, "Influence of Crystal Structural Orientation on Impedance and Piezoelectric Properties of KNN Ceramic Prepared using Sol-Gel Method," Sains Malaysiana, vol. 45, no. 8, pp. 1281-1287, 2016.
[96] J. Molarius, J. Kaitila, T. Pensala, and M. Ylilammi, "Piezoelectric ZnO films by r.f. sputtering," Journal of Materials Science: Materials in Electronics, vol. 14, no. 5-7, pp. 431-435, 2003.
[97] T. Kamohara, M. Akiyama, N. Ueno, K. Nonaka, and N. Kuwano, "Influence of aluminum nitride interlayers on crystal orientation and piezoelectric property of aluminum nitride thin films prepared on titanium electrodes," Thin Solid Films, vol. 515, no. 11, pp. 4565-4569, 2007.
[98] W. W. Qin et al., "Microstructure-related piezoelectric properties of a ZnO film grown on a Si substrate," Ceramics International, vol. 42, no. 15, pp. 16927-16934, 2016.
[99] X. B. Wang, C. Song, D. M. Li, K. W. Geng, F. Zeng, and F. Pan, "The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film," Applied Surface Science, vol. 253, no. 3, pp. 1639-1643, 2006.
[100] X. B. Wang, D. M. Li, F. Zeng, and F. Pan, "Microstructure and properties of Cu-doped ZnO films prepared by dc reactive magnetron sputtering," Journal of Physics D: Applied Physics, vol. 38, no. 22, pp. 4104-4108, 2005.
[101] Y. Zhang et al., "Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators," ACS Appl Mater Interfaces, vol. 8, no. 2, pp. 1381-7, Jan 20 2016.
[102] J.-Q. Wen, J.-M. Zhang, and Z.-Q. Li, "Structural and electronic properties of Y doped ZnO with different Y concentration," Optik, vol. 156, pp. 297-302, 2018.
[103] Y. C. Yang, C. Song, X. H. Wang, F. Zeng, and F. Pan, "Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films," Applied Physics Letters, vol. 92, no. 1, p. 012907, 2008.
[104] A. L. Kholkin, E. K. Akdogan, A. Safari, P. F. Chauvy, and N. Setter, "Characterization of the effective electrostriction coefficients in ferroelectric thin films," Journal of Applied Physics, vol. 89, no. 12, pp. 8066-8073, 2001.
[105] T. S. v. d. Heever and W. J. Perold, "The influence of resistance and carrier concentration on the output voltage of a ZnO nanogenerator," van den Heever and Perold Micro and Nano Systems Letters, vol. 1, no. 4, 2013.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw