進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0708201902454900
論文名稱(中文) 利用衛星高度計資料研究颱風波高分布
論文名稱(英文) A Study on the Wave Height Distribution during Typhoon Period by Altimeter Data
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 林沛臻
研究生(英文) Pei-Chen Lin
學號 N86064212
學位類別 碩士
語文別 中文
論文頁數 88頁
口試委員 指導教授-董東璟
口試委員-黃清哲
口試委員-蔡清標
中文關鍵字 衛星高度計  最大風速半徑  波高分布  颱風 
英文關鍵字 satellite altimeter  maximum wind speed radius  wave height distribution  typhoon 
學科別分類
中文摘要 本文利用衛星高度計資料分析颱風最大風速半徑八倍內之波高空間分布,分析澳大利亞海洋資料網(AODN)所提供之178663筆衛星高度計資料,並與位於外洋海域的台東外洋浮標和東沙浮標資料進行驗證。研究結果顯示:衛星高度計反算之波高和實測值之相關性達0.9以上,週期相關性達0.8以上,顯示使用衛星高度計在波高分布的研究上具有可靠性。本文以颱風期間最大波高以及最大風速半徑為無因次參數從事颱風波高分布研究,首先驗證了Willoughby and Rahn(2004)所提出的颱風最大風速半徑估算經驗式最合理,本文再分析依颱風強度與前進速度分類探討颱風最大風速半徑八倍內之波高分布,結果顯示,颱風波高分布型態受颱風移動速度影響大,當移動速度較小時,最大波高出現在颱風第一象限;當移動速度較快時,最大波高則出現在第四象限,此結果與前人在較強颱風且移動速度慢條件下所提出之波高分布不同,可能原因是過去之颱風波高分布係使用模型風場模擬所得,本文則是使用衛星高度計觀測之實際風場,分析所得之波高分布應具有較高可信度。
英文摘要 The spatial distribution of wave height within eight times the maximum wind speed radius of the typhoon had been discuss in this study by using altimeter data. The satellite altimeter data provide by Australian Ocean Data Network portal (AODN). The AODN data base collects 13 altimeter data. The total length of data is 33 years. The buoy data (Taitung Open sea and Dongsha) had been used to verified wave height, wave period and wind speed obtain from AODN. The maximum wind speed empirical formulas were discussed in this study. Comparison with JTWC best track typhoon data, the best empirical formula was proposed by Willoughby and Rahn (2004). According to the classification of typhoon intensity and forward speed, the wave height distribution show that the pattern is greatly affected by the typhoon forward speed. When the moving speed is slow, the maximum wave height appears in the forward right quadrant of the typhoon; when the forward movement increase, the maximum wave height appears in the rear right quadrant. Compared with Young (1988), the wave height distribution obtained by the satellite altimeter is different under the condition of strong typhoon and slow moving speed. The possible reason is that Young (1988) obtain the typhoon wave height distribution by using wave model with analytic model of typhoon wind field. The wave data collected from altimeter leads to a high reliability of the wave height distribution.
論文目次 摘要 I
ABSTRACT II
誌謝 VIII
目錄 IX
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 3
1-3 本文架構 6
第二章 衛星高度計介紹 7
2-1 遙測技術與衛星高度計介紹 7
2-1-1 遙測技術簡介 7
2-1-2 衛星高度計發展背景 11
2-1-3 衛星高度計特性 13
2-2 衛星高度計反算波浪原理 16
2-3 衛星高度計資料庫 20
第三章 高度計反算波浪驗證結果 24
3-1 本文使用資料 24
3-1-1 高度計資料 24
3-1-2 現場觀測資料 29
3-2 波高驗證結果 31
3-3 風速驗證結果 33
3-4 週期驗證結果 37
第四章 颱風波高分佈 39
4-1 西北太平洋颱風 39
4-1-1 颱風統計 39
4-1-2 最大風速半徑決定 44
4-2 資料選取原則與正規化 50
4-3 颱風波高分布結果 57
4-3-1 颱風波高與風速分布 57
4-3-2 與前人結果比較 65
4-4 討論 73
第五章 結論與建議 78
5-1 結論 78
5-2 建議 79
參考文獻 80
參考文獻 [1] 梁乃匡、林文宗(1978),「薇拉颱風波浪實測與推算之比較」,第二屆海洋工程研討會論文集, pp. 23-27。
[2] 張憲國(2003),「台灣港灣地區颱風波浪推算之應用研究 (II)」,交通部運輸研究所。
[3] 朱景鉅、張憲國(2006),「應用衛星測高資料探討台灣外海波浪特性」,國立交通大學碩博士論文 。
[4] 張憲國、錢維安、何良勝(2007),「應用類神經網路在台灣東岸海域颱風波浪推算之研究」,海洋工程學刊,第3卷,第1期,第73-95頁。
[5] 陳俊榮、張憲國(2010),以衛星測高資料探討台灣海域之外海與近岸波高之統計特性」,國立交通大學碩博士論文 。
[6] 戴世杰、黃清晢、范揚洺(2017),「WAVEWATCH III多重網格模式應用於颱風波浪推算之研究」,第39屆海洋工程研討會論文集,pp. 125-130。
[7] Alves, J. H. G. and Young, I. R. (2003). On estimating extreme wave heights using combined Geosat, Topex/Poseidon and ERS-1 altimeter data. Applied Ocean Research, 25(4), 167-186.
[8] Anthes, R. A. (1982). Tropical cyclones: Their evolution, structure and effects: Boston. American Meteorological Society.
[9] Basu, S. and Pandey, P. C. (1991). Numerical experiment with modelled return echo of a satellite altimeter from a rough ocean surface and a simple iterative algorithm for the estimation of significant wave height. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 100(2), 155-163.
[10] Bhowmick, S. A., Basu, S., Sharma, R. and Kumar, R. (2015). Impact of Assimilating SARAL/AltiKa SWH in SWAN Model During Indian Ocean Tropical Cyclone Phailin. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1812-1817.
[11] Bretschneider, C. L. (1972). A non-dimensional stationary hurricane wave model. In Offshore Technology Conference. Offshore Technology Conference.
[12] Bretschneider, C. L. and Tamaye, E. E. (1976). Hurricane wind and wave forecasting techniques. Coastal Engineering Proceedings, 1(15).
[13] Breugem, W. A. and Holthuijsen, L. H. (2007). Generalized shallow water wave growth from Lake George. Journal of waterway, port, coastal, and ocean engineering, 133(3), 173-182.
[14] Brown, G. (1977). The average impulse responce of a rough surface and its applications. IEEE Journal of oceanic engineering, 2(1), 67-74.
[15] Campos, R. M. and Guedes Soares, C. (2017). Assessment of three wind reanalyses in the North Atlantic Ocean. Journal of Operational Oceanography, 10(1), 30-44.
[16] Chavas, D. R., Lin, N., Dong, W. and Lin, Y. (2016). Observed tropical cyclone size revisited. Journal of Climate, 29(8), 2923-2939.
[17] Chelton, D. B., Walsh, E. J. and MacArthur, J. L. (1989). Pulse compression and sea level tracking in satellite altimetry. Journal of atmospheric and oceanic technology, 6(3), 407-438.
[18] Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L. L., and Callahan, P. S. (2001). Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. ed. LL Fu and A. Cazenave, 1131., Academic Press, 1–131.
[19] Cheney, R. E., Douglas, B. C., Agreen, R. W., Miller, L. and Porter, D. L. (1987). Geosat altimeter geophysical data record user handbook. NASA STI/Recon Technical Report N, 88.
[20] Dobson, E., Monaldo, F., Goldhirsh, J. and Wilkerson, J. (1987). Validation of Geosat altimeter‐derived wind speeds and significant wave heights using buoy data. Journal of Geophysical Research: Oceans, 92(C10), 10719-10731.
[21] Donelan, M. A. (1982). The dependence of the aerodynamic drag coefficient on wave parameters. In Proc. First Int. Conf. on Meteorol. and Air-Sea Interaction of the Coastal Zone (pp. 381-387). Amer. Meteor. Soc..
[22] Durrant, T. H., Greenslade, D. J., and Simmonds, I. (2009). Validation of Jason-1 and Envisat remotely sensed wave heights. Journal of Atmospheric and Oceanic Technology, 26(1), 123-134.
[23] Fu, L. L. and Glazman, R. (1991). The effect of the degree of wave development on the sea state bias in radar altimetry measurement. Journal of Geophysical Research: Oceans, 96(C1), 829-834.
[24] Gairola, R. M. and Pandey, P. C. (1986). The effect of whitecaps and foam on wind speed extraction with a pulse limited radar altimeter. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 95(2), 265.
[25] Gommenginger, C. P., Srokosz, M. A., Challenor, P. G. and Cotton, P. D. (2003). Measuring ocean wave period with satellite altimeters: A simple empirical model. Geophysical Research Letters, 30(22).
[26] Gower, J. F. R., (1996). Intercalibration of wave and wind data from TOPEX/POSEIDON and moored buoys off the west coast of Canada. Journal of Geophysical Research: Oceans, 101(C2), 3817-3829.
[27] Graham, H. E. and Nunn., D. E. (1959). Meteorological Considerations Pertinent to Standard Project Hurricane, Atlantic and Gulf Coasts of the United States. US Department of Commerce, Weather Bureau.
[28] Groll, N. and Weisse, R. (2017). A multi-decadal wind-wave hindcast for the North Sea 1949–2014: coastDat2. Earth System Science Data, 9(2), 955.
[29] Guan, C. and Xie, L. (2004). On the linear parameterization of drag coefficient over sea surface. Journal of Physical Oceanography, 34(12), 2847-2851.
[30] Hasselmann, K. (1960). Basic equations for sea wave forecasting. Sch~'stechnik, 7, 191-195.
[31] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K. and Meerburg, A. (1973). Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft 8-12.
[32] Hayne, G. (1980). Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering. IEEE Transactions on Antennas and Propagation, 28(5), 687-692.
[33] Hithin, N. K., Kumar, V. S. and Shanas, P. R. (2015). Trends of wave height and period in the Central Arabian Sea from 1996 to 2012: a study based on satellite altimeter data. Ocean Engineering, 108, 416-425.
[34] Holland, G. J. (1980). An analytic model of the wind and pressure profiles in hurricanes. Monthly weather review, 108(8), 1212-1218.
[35] Hsu, S. A. and Babin, A. (2005). Estimating the radius of maximum wind via satellite during Hurricane Lili (2002) over the Gulf of Mexico. Natl. Weather Assoc. Electron. J, 6(3), 1-6.
[36] Hsiao, S. S., Ting, C. L., Lin, M. C. and Su, C. A. (2007). Prediction of Typhoon Swells Using Neural Networks. Journal of Coastal and Ocean Engineering, 7(2), 25-45.
[37] Hwang, P. A., Teague, W. J., Jacobs, G. A. and Wang, D. W. (1998). A statistical comparison of wind speed, wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico region. Journal of Geophysical Research: Oceans, 103(C5), 10451-10468.
[38] Izaguirre, C., Méndez, F. J., Menéndez, M. and Losada, I. J. (2011). Global extreme wave height variability based on satellite data. Geophysical Research Letters, 38(10).
[39] Knaff, J. A., Sampson, C. R., DeMaria, M., Marchok, T. P., Gross, J. M. and McAdie, C. J. (2007). Statistical tropical cyclone wind radii prediction using climatology and persistence. Weather and Forecasting, 22(4), 781-791.
[40] Knaff, J. A., Sampson, C. R. and Musgrave, K. D. (2018). Statistical Tropical Cyclone Wind Radii Prediction Using Climatology and Persistence: Updates for the Western North Pacific. Weather and Forecasting, 33(4), 1093-1098.
[41] Kossin, J. P., Knaff, J. A., Berger, H. I., Herndon, D. C., Cram, T. A., Velden, C. S. and Hawkins, J. D. (2007). Estimating hurricane wind structure in the absence of aircraft reconnaissance. Weather and Forecasting, 22(1), 89-101.
[42] Kudryavtseva, N. A. and Soomere, T. (2016). Validation of the multi-mission altimeter wave height data for the Baltic Sea region. arXiv preprint arXiv:1603.08698.
[43] Mackay, E. B. L., Retzler, C. H., Challenor, P. G. and Gommenginger, C. P. (2008). A parametric model for ocean wave period from Ku band altimeter data. Journal of Geophysical Research: Oceans, 113(C3).
[44] Monaldo, F.. (1988). Expected differences between buoy and radar altimeter estimates of wind speed and significant wave height and their implications on buoy-altimeter comparisons. J. Geophys. Res., 93, 2285–2302.
[45] Onea, F. and Rusu, L. (2017). A long-term assessment of the Black Sea wave climate. Sustainability, 9(10), 1875.
[46] Ou, S. H., Hsu, T. W., Tzang, S. Y., Fang, C. C. and Liau, J. M. (1999). The study of typhoon waves in Taiwan area by SWAN model. In Proceedings of the 21th Ocean Engineering Conference in Taiwan (pp. 87-95).
[47] Queffeulou, P. (2003). Validation of ENVISAT RA-2 and JASON-1 altimeter wind and wave measurements. In IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477) (Vol. 5, pp. 2987-2989). IEEE.
[48] Queffeulou, P. (2004). Long-term validation of wave height measurements from altimeters. Mar. Geod., 27, 495–510.
[49] Queffeulou, P., Bentamy, A. and Guyader, J. (2003) Long term quality satus of wave height and wind speed measurements from satellite altimeters. Proceedings of the ISOPE conference, Honolulu, Hawaii, USA.
[50] Queffeulou, P., Bentamy, A. and Guyader, J. (2004). Satellite wave height validation over the Mediterranean Sea. In Proceedings of the 2004 Envisat and ERS Symposium, Salzburg, Austria (pp. 6-10).
[51] Remya, G., Kumar, R., Basu, S. and Sarkar, A. (2011). Altimeter-derived ocean wave period using genetic algorithm. IEEE Geoscience and Remote Sensing Letters, 8(2), 354-358.
[52] Ribal, A. and Young, I. R. (2019). 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Scientific data, 6(1), 77.
[53] Sannasiraj, S. A., Kalyani, M., Kumar, E. D., Harini, K., Latha, G. and Sundar, V. (2014). Inter comparison of wave height observations from buoy and altimeter with numerical prediction.
[54] Shaeb, K. H. B., Anand, A., Joshi, A. K. and Bhandari, S. M. (2015). Comparison of near coastal significant wave height measurements from SARAL/AltiKa with wave rider buoys in the Indian region. Marine Geodesy, 38, 422-436.
[55] Shore Protection Manual (1984). U.S. Army Coastal Engineering Research Center, Fort Belvoir, Vol. I-III.
[56] Silva, R., Govaere, G., Salles, P., Bautista, G. and Díaz, G. (2003). Oceanographic vulnerability to hurricanes on the Mexican coast. In Coastal Engineering 2002: Solving Coastal Conundrums, 39-51.
[57] Su, H., Wei, C., Jiang, S., Li, P. and Zhai, F. (2017). Revisiting the seasonal wave height variability in the South China Sea with merged satellite altimetry observations. Acta Oceanologica Sinica, 36(11), 38-50.
[58] Sverdrup, H. U. (1947). Wind, sea and swell. Theory of relations for forecasting. US Navy Hydrog. Office, Pub., 601, 44.
[59] SWAMP Group. The Sea Wave Modeling Project (SWAMP): Principal Results and Conclusions. (1985). Plenum Press, 256pp.
[60] Takagi, H. and Wu, W. (2016). Maximum wind radius estimated by the 50 kt radius: improvement of storm surge forecasting over the western North Pacific. Natural Hazards and Earth System Sciences, 16(3), 705-717.
[61] Vinoth, J. and Young, I. R. (2011). Global estimates of extreme wind speed and wave height. Journal of Climate, 24(6), 1647-1665.
[62] Walker, D. M. (1995). Measurement techniques and capabilities of the Geosat Follow-On (GFO) radar altimeter. Proc. Second Topical Symp. on Combined Optical-Microwave Earth and Atmosphere Sensing, Atlanta, GA, IEEE, 226–228.
[63] Wang, G. C. (1978). Sea-level pressure profile and gusts within a typhoon circulation. Monthly Weather Review, 106(7), 954-960.
[64] Wan, Y., Zhang, J., Meng, J., Wang, J. (2015). A wave energy resource assessment in the China’s seas based on multi-satellite merged radar altimeter data. Acta Oceanologica Sinica, 34(3), 115-124.
[65] Willoughby, H. E. and Rahn, M. E. (2004). Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Monthly Weather Review, 132(12), 3033-3048.
[66] Yaakob, O., Hashim, F. E., Omar, K. M., Din, A. H. M. and Koh, K. K. (2016). Satellite-based wave data and wave energy resource assessment for South China Sea. Renewable energy, 88, 359-371.
[67] Young, I. R. (1988a). Parametric hurricane wave prediction model. Journal of Waterway, Port, Coastal, and Ocean Engineering, 114(5), 637-652.
[68] Young, I. R. (1988b). A shallow water spectral wave model. Journal of Geophysical Research: Oceans, 93(C5), 5113-5129.
[69] Young, I. R. (1998). An intercomparison of GEOSAT, TOPEX and ERS1 measurements of wind speed and wave height. Ocean Engineering, 26(1), 67-81.
[70] Young, I. R. (1999). Seasonal variability of the global ocean wind and wave climate. International Journal of Climatology, 19(9), 931-950.
[71] Young, I. (2017). A review of parametric descriptions of tropical cyclone wind-wave generation. Atmosphere, 8(10), 194.
[72] Young, I. R. and Burchell, G. P. (1996). Hurricane generated waves as observed by satellite. Ocean Engineering, 23(8), 761-776.
[73] Young, I. R. and Vinoth, J. (2013). An “extended fetch” model for the spatial distribution of tropical cyclone wind–waves as observed by altimeter. Ocean Engineering, 70, 14-24.
[74] Zieger, S., Vinoth, J. and Young, I. R. (2009). Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. Journal of Atmospheric and Oceanic Technology, 26(12), 2549-2564.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw