進階搜尋


下載電子全文  
系統識別號 U0026-0708201813321300
論文名稱(中文) 可準確計算壓縮機流場的紊流模型之研究
論文名稱(英文) A study on turbulence models for accurate prediction in compressor flows
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 施旻伸
研究生(英文) Min-Shen Shi
學號 p46051369
學位類別 碩士
語文別 中文
論文頁數 109頁
口試委員 指導教授-陳文立
口試委員-李約亨
口試委員-吳毓庭
中文關鍵字 計算流體力學  壓縮機葉片  紊流模型 
英文關鍵字 CFD  Turbulence model  Compressor blades. 
學科別分類
中文摘要 現今科技的進步,使數值方法越趨成熟,讓數值方法儼然成為設計氣渦輪機的主流工具,因此如何選擇合適的數值方法便成為一門重要的學問。故本文主要探討三種紊流模型k-ω SST model、k-ε low-Re model與k-ε v2f model,在二維DCA、CD葉片與三維葉片NASA stage 37的預測準確性。藉此判斷適合用在此類流場之紊流模型。根據二維葉片之結果,在設計與非設計條件下,v2f model的預測皆相當精準,且分離氣泡、層紊流轉換與分離現象等許多複雜流動,都能夠完整地模擬到,而low-Re model是最不準確的。在stage 37的研究當中,SST model和v2f model具備較符合實驗的計算結果,但兩者結果十分相似,需仰賴更多結果方能決定兩者之優劣。值得注意的是,缺乏輪轂洩漏流對徑向分佈預測的影響,造成壓力與溫度預測不足。另外在壓縮比與絕熱效率性能圖中,目前SST model多能預測出相似的性能曲線,而最大的壓縮比誤差約為5.8%,因此準確度還是相當良好。
英文摘要 Nowadays, the numerical simulation is a mature technology due to the advancement of science and technology. Numerical analysis has also become the mainstream tool for designing gas turbines. However, how to choose an appropriate numerical method becomes a very important issue. In this thesis, the performance of three different turbulence models, namely SST, low-Re, and v2f models, in some 2D and 3D compressor-blade flows has been investigated. These compressor-blade flows are: 2D DCA and CD blades, and a 3D NASA stage 37. The results of DCA and CD blades indicate that v2f models can return more accurate prediction at both design and off-design conditions. In particular, many complicated flows, such as separation bubbles, transition and separation, can be captured. In 3D NASA stage 37, the prediction by the SST and v2f model is much better than low-Re model, and their results are very similar. However, without considering hub leakage flow, magnitudes of pressure and temperature are overestimated. Other comparisons like pressure ratio and adiabatic efficiency characteristic map, SST model can predict reasonably well, with maximum error being 5.8%.
論文目次 中文摘要 I
Extended Abstract II
誌謝 X
目錄 XI
表目錄 XIV
圖目錄 XV
符號說明 XIX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 7
1.4 論文架構 8
第二章 數值方法與數學模型 9
2.1 數值方法 9
2.2 統御方程式 10
2.3 紊流模型 12
2.3.1 k-ω SST model 13
2.3.2 k-ε low-Re model17
2.3.3 k-ε v2f model 19
第三章 二維葉片分析 23
3.1 二維葉片 23
3.2 DCA葉片 24
3.2.1 網格與邊界條件 25
3.2.2 數據計算 27
3.3 CD葉片 28
3.3.1 網格與邊界條件 29
3.3.2 數據計算 32
3.4 結果與討論 32
3.4.1 DCA葉片 32
3.4.2 CD葉片 36
第四章 三維葉片分析 71
4.1 三維葉片 71
4.2 NASA stage 37 72
4.2.1 網格與邊界條件 73
4.2.2 數據計算 77
4.3 網格測試 80
4.4 結果與討論 84
4.4.1 徑向分佈 84
4.4.2 壓縮機性能 88
第五章 結論與未來展望 102
5.1 結論 102
5.2 未來展望 104
參考文獻 105

參考文獻 [1] C. Xu and R. Amano, "Design and optimization of Turbo compressors," Thermal Engineering in Power Systems, vol. 22, pp. 305, 2008.
[2] R. Chima, "A k-omega turbulence model for quasi-three-dimensional turbomachinery flows," in 34th Aerospace Sciences Meeting and Exhibit, 1995, pp. 248.
[3] D. C. Wilcox, "Reassessment of the scale-determining equation for advanced turbulence models," AIAA journal, vol. 26, no. 11, pp. 1299-1310, 1988.
[4] T. Arima, T. Sonoda, M. Shirotori, A. Tamura, and K. Kikuchi, "A Numerical Investigation of Transonic Axial Compressor Rotor Flow Using a Low-Reynolds-Number k-ε Turbulence Model," Journal of Turbomachinery, vol. 121, pp. 44-58, 1999.
[5] K.-Y. Chien, "Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model," AIAA journal, vol. 20, no. 1, pp. 33-38, 1982.
[6] J. Dunham, "CFD validation for propulsion system components (la validation CFD des organes des propulseurs)," ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT NEUILLY-SUR-SEINE (FRANCE)1998.
[7] G. Gerolymos, J. Neubauer, V. Sharma, and I. Vallet, "Improved prediction of turbomachinery flows using near-wall Reynolds-stress model," in ASME Turbo Expo 2001: Power for Land, Sea, and Air, 2001, pp. 86-99: American Society of Mechanical Engineers.
[8] G. Gerolymos and I. Vallet, "Wall-normal-free Reynolds-stress model for rotating flows applied to turbomachinery," AIAA journal, vol. 40, no. 2, pp. 199-208, 2002.
[9] J. A. Bourgeois, R. J. Martinuzzi, E. Savory, C. Zhang, and D. A. Roberts, "Assessment of turbulence model predictions for an aero-engine centrifugal compressor," Journal of Turbomachinery, vol. 133, no. 1, pp. 011025, 2011.
[10] P. A. Durbin, "Separated flow computations with the k-epsilon-v-squared model," AIAA journal, vol. 33, no. 4, pp. 659-664, 1995.
[11] F. Lien, G. Kalitzin, and P. Durbin, "RANS modeling for compressible and transitional flows," Proceedings of the Stanford University Center for Turbulence Research Summer Program, pp. 267-286, 1998.
[12] L. Davidson, P. V. Nielsen, and A. Sveningsson, "Modifications of the V2F model for computing the flow in a 3D wall jet," Turbulence, Heat and Mass Transfer, 4, pp. 577-584, 2003.
[13] J. Luo and E. H. Razinsky, "Conjugate heat transfer analysis of a cooled turbine vane using the V2F turbulence model," Journal of Turbomachinery, vol. 129, no. 4, pp. 773-781, 2007.
[14] F. Lien, W. Chen, and M. Leschziner, "Low-Reynolds-number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations," in Engineering Turbulence Modelling and Experiments, Volume 3: Elsevier, 1996, pp. 91-100.
[15] J. H. Park, D. K. Sohn, C. H. Kim, and J. H. Baek, "Application of the V2-F Turbulence Model for Flow Analysis of Turbomachinery," Transactions of the Korean Society of Mechanical Engineers. B, vol. 40, no. 2, pp. 75-83, 2016.
[16] J. DENTON, "The calculation of three-dimensional viscous flow through multistage turbomachines," Journal of turbomachinery, vol. 114, no. 1, pp. 18-26, 1992.
[17] C. Nguyen, "Turbulence Modeling," Cambridge: Department of Aeronautics and Astronautics. Available through: Massachusetts Institute of Technology http://www. mit. edu/cuongng/Site/Publication files/TurbulenceModeling 04NOV05. pdf [Accessed 5 September 2015], 2005.
[18] F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA journal, vol. 32, no. 8, pp. 1598-1605, 1994.
[19] P. Durbin, "On the k-3 stagnation point anomaly," International journal of heat and fluid flow, vol. 17, no. 1, pp. 89-90, 1996.
[20] S. Deutsch and W. C. Zierke, "The Measurement of Boundary Layers on a Compressor Blade in Cascade," PENNSYLVANIA STATE UNIV UNIVERSITY PARK APPLIED RESEARCH LAB1986.
[21] W. Zierke and S. Deutsch, "The Measurement of Boundary Layers on a Compressor Blade in Cascade. NASA C.R.-185118.," 1989.
[22] D. Borello, K. Hanjalic, and F. Rispoli, "Prediction of cascade flows with innovative second-moment closures," Journal of fluids engineering, vol. 127, no. 6, pp. 1059-1070, 2005.
[23] Y. Elazar, "A mapping of the viscous flow behavior in a controlled diffusion compressor cascade using laser doppler velocimetry and preliminary evaluation of codes for the prediction of stall," Monterey, California. Naval Postgraduate School, 1988.
[24] Y. Elazar and R. Shreeve, "Viscous flow in a controlled diffusion compressor cascade with increasing incidence," Journal of Turbomachinery, vol. 112, no. 2, pp. 256-265, 1990.
[25] Y. Ho, G. Walker, and P. Stow, "Boundary layer and Navier-Stokes analysis of a NASA controlled-diffusion compressor blade," in ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition, 1990: American Society of Mechanical Engineers.
[26] W. Chen, F. Lien, and M. Leschziner, "Computational prediction of flow around highly loaded compressor-cascade blades with non-linear eddy-viscosity models," International Journal of Heat and Fluid Flow, vol. 19, no. 4, pp. 307-319, 1998.
[27] W. A. McMullan and G. J. Page, "Large eddy simulation of a controlled diffusion compressor cascade," Flow, turbulence and combustion, vol. 86, no. 2, pp. 207-230, 2011.
[28] R. D. Moore and L. Reid, "Performance of Single-Stage Axial-Flow Transonic Compressor With Rotor and Stator Aspect Ratios of 1.19 and 1.26, Respectively, and With Design Pressure Ratio of 2.05," NASA Technical Paper 1659 1980.
[29] L. Reid and R. D. Moore, "Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor," NASA-TP-1337, 1978.
[30] P. R. Jayachandran, "A study of tip clearance model effects on computational simulation costs for NASA rotor 37 " 2010.
[31] R. Heider, J. Duboue, B. Petot, G. Billonnet, V. Couaillier, and N. Liamis, "Three-dimensional analysis of turbine rotor flow including tip clearance," in ASME 93-GT-111 1993 International Gas Turbine and Aeroengine Congress and Exposition, 1993: American Society of Mechanical Engineers.
[32] D. C. Urasek and D. C. Janetzke, "Performance of tandem-bladed transonic compressor rotor with tip speed of 1375 feet per second," NASA-TM-X-2484, 1972.
[33] A. Gomar, N. Gourdain, and G. Dufour, "High fidelity simulation of the turbulent flow in a transonic axial compressor," 9th European Turbomachinery Conference, 2011.
[34] A. Shabbir, M. Celestina, J. Adamczyk, and A. Strazisar, "The effect of hub leakage flow on two high speed axial flow compressor rotors," in ASME 97-GT-346 1997 International Gas Turbine and Aeroengine Congress and Exhibition, 1997: American Society of Mechanical Engineers.
[35] J. Denton, "Lessons from rotor 37," Journal of Thermal Science, vol. 6, no. 1, pp. 1-13, 1997.
[36] M. Morini, M. Pinelli, P. R. Spina, and M. Venturini, "Computational fluid dynamics simulation of fouling on axial compressor stages," Journal of Engineering for Gas Turbines and Power, vol. 132, no. 7, pp. 072401, 2010.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw