進階搜尋


下載電子全文  
系統識別號 U0026-0708201417444100
論文名稱(中文) 利用雙注入半導體雷射的週期一非線性動態於微波訊號的產生以及光雙單調制邊帶的轉換
論文名稱(英文) Photonic Microwave Generation and Optical DSB-to-SSB Conversion using Period-One Nonlinear Dynamics of Dual-Beam Optically Injected Semiconductor Lasers
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 2
出版年 103
研究生(中文) 潘孟豐
研究生(英文) Meng Feng Pan
學號 L76011485
學位類別 碩士
語文別 中文
論文頁數 68頁
口試委員 指導教授-黃勝廣
口試委員-曾碩彥
口試委員-魏明達
中文關鍵字 半導體雷射  光子微波產生  光雙單調制邊帶轉換  週期一動態  雙光束注入 
英文關鍵字 Semiconductor laser  Photonic microwave generation  Optical DSB-to-SSB conversion  Period-one dynamics  Dual beam injection 
學科別分類
中文摘要 本論文是利用數值模擬的方式來探討穩定鎖住半導體雷射於雙光注入系統之下週期一非線性動態的微波光子訊號產生,主要是透過固定一個主雷射的注入強度以及光頻率於穩定鎖住區域而改變另一個可調式雷射的注入光強度和光頻率來分析整理所得到的微波地圖。我們由所得到的微波地圖分析其可調範圍和功率範圍並加入雜訊進行包含線寬和相位雜訊的訊號品質探討。接下來由所探討的微波訊號操作點,我們加入外部調制於穩定鎖住半導體雷射上,研究光雙單邊帶轉換後的可用微波範圍和功率範圍以及微波光子訊號品質的探討
英文摘要 This study investigate the photonic generation of broadly tunable microwave signals utilizing a dual beam optically injected semiconductor laser at period one nonlinear dynamics. By injecting a slave laser with one detuned master laser at the stable locking states and one detuned master laser at arbitrary states, microwave signals with frequencies corresponding to the frequency spacing of the master laser can be generated. Without the need for a microwave reference source, the dual beam optical injection scheme has the advantage of low cost and less system complexity. Moreover, without the limitation of period-doubling bifurcation and Hopf bifurcation, by utilizing the period one oscillation state with a single beam injection scheme, the microwave signals generated with the proposed scheme have a much broader tuning range. In this thesis, generation of tunable microwave signals up to 120GHz is demonstrated, which is currently limited by the locking range of the slave laser determined by the frequency difference between the Hopf and the saddle node bifurcation curve. The linewidth is 80 ~ 150 MHz and the phase noise is 17~24dB, which the master noise is considered. When the system is conformed to application of the Radio over fiber. The external modulation is used for eliminating chromatic dispersion effect, which is arose by optical fiber, the power penalty can reduce to 3dB. The linewidth is 20~50 MHz and the phase noise is down to 0~2.5dB when the injection parameter is rising.
論文目次 目錄
第一章 前言 1
1.1微波訊號的應用 1
1.2微波訊號的產生 2
1.3研究動機 7
1.4論文架構 9
第二章 光注入模擬系統 10
2.1 理論模型 10
2.2 模擬模型 11
2.2.1 單光注入半導體雷射之模擬模型……………………………………….11
2.2.2 雙光注入半導體雷射之模擬模型 18
2.2.3 加雜訊的雙光注入半導體雷射之模擬模型 18
第三章 雙光注入系統下的微波特性 20
3.1雙注入系統動態與分類 20
3.2微波頻率的可調性 25
3.2.1雙光注入動態地圖 25
3.2.2雙光注入微波頻率地圖 29
3.2.3雙光注入微波功率地圖 33
3.3雙光注入微波線寬 37
3.4微波相位雜訊變動 39
第四章 光雙單調制邊帶轉換後的微波特性 42
4.1鎖住情形 42
4.1.1單注入系統的鎖住情形 42
4-1.2雙注入系統的光雙單邊帶調變鎖住情形 44
4.2 雙注入系統的雙邊帶光譜到單邊帶光譜的轉換 51
4.2.1雙注入系統的光譜形式 51
4.2.2雙注入系統的單邊帶特徵(Single Sideband Characteristic ) 53
4.2.3雙注入系統光雙單邊帶轉換後的微波功率衰減 57
4.3雙注入系統光雙單邊帶轉換後的微波信號穩定度 58
4.3.1微波線寬 59
4.3.2相位雜訊變動 59
4.4雙注入系統光雙單邊帶調變後旁邊帶對微波信號的效應 63
第五章 結論與展望……………………………………………………….65
參考文獻…………………………………………………………………66


表目錄
表1 微波譜濾波後讀值………………………………………………………………….63

圖目錄

圖1-1RFIC架構圖 ……………………………………………………………………3
圖1-2電容器C的高頻等效模型……………………………………………………….…3
圖1-3光外插法(Optical heterodyne)架構圖……………………………………………....4
圖1-4 Optical Phase Lock Loop 架構圖…………………………………………………5
圖1-5External Modulation 架構圖…………………………………………………5
圖1-6光電振盪器架構圖…………………………………………………......6
圖1-7非線性動態架構圖……………………………………………………………….....7
圖1-8光雙單調制邊帶功率變動圖……………………………………………………….8
圖2- 1單注入模擬地圖 ……………………………………………………………...…14
圖2-2操作在ξ=0.4、f=10GHz穩定鎖住動態的(a)光譜、(b)微波譜、(c)時序譜………………………………………………………………………………………......15
圖2-3操作在ξ=0.4、f=50GHz穩定鎖住動態的(a)光譜、(b)微波譜、(c)時序譜………………………………………………………………………………………......15
圖2-4操作在ξ=0.075、f=14GHz週期二動態的(a)光譜、(b)微波譜、(c)時序譜.16
圖2-5操作在ξ=0.025、f=63GHz四波混合動態的(a)光譜、(b)微波譜、(c)時序譜…………………………………………………………………………………………..16
圖2-6操作在ξ=0.035、f=5GHz混沌動態的(a)光譜、(b)微波譜、(c)時序譜……17
圖3-1雙光注入半導體雷射架構圖………………………………………………………20
圖3-2週期一動態操作點ξ_1=0.5、f_1=50GHz、ξ_2=0.2、f_2=6GHz(a)光譜、(b)微波譜、(c)時序譜…………………………………………………………………………………21
圖3-3週期二動態操作點ξ_1=0.18、f_1=21GHz、ξ_2=0.2、f_2=6GHz(a)光譜、(b)微波譜、(c)時序譜………………………………………………………………………………22
圖3-4四波混合動態操作點ξ_1=0.6、f_1=-65GHz、ξ_2=0.2、f_2=6GHz(a)光譜、(b)微波譜、(c)時序譜……………………………………………………………..……………23
圖3-5週期一動態操作點ξ_1=0.2、f_1=-42GHz、ξ_2=0.2、f_2=6GHz(a)光譜、(b)微波譜、(c)時序譜……………………………………………………………………….................24
圖3-6主雷射2在穩定鎖住區域中的操作點設定地圖…………………………………25
圖3-7(a) ξ_2=0.2、f_2=6GHz動態地圖、(b) ξ_2=0.2、f_2=-20GHz動態地圖、(c) ξ_2=0.2、f_2=-28GHz動態地圖……………………………………………………..……………26
圖3-7(d) ξ_2=0.3、f_2=6GHz動態地圖、(e) ξ_2=0.3、f_2=-20GHz動態地圖、(f) ξ_2=0.3、f_2=-28GHz動態地圖……………………………………………………..……………27
圖3-7(g) ξ_2=0.4、f_2=6GHz動態地圖、(h) ξ_2=0.4、f_2=-20GHz動態地圖、(i) ξ_2=0.4、f_2=-28GHz動態地圖……………………………………………………..……………28
圖3-8(a) ξ_2=0.2、f_2=6GHz微波頻率地圖、(b) ξ_2=0.2、f_2=-20GHz微波頻率地圖、(c) ξ_2=0.2、f_2=-28GHz微波頻率地圖………………………..……………30
圖3-8(d) ξ_2=0.3、f_2=6GHz微波頻率地圖、(e) ξ_2=0.3、f_2=-20GHz微波頻率地圖、(f) ξ_2=0.3、f_2=-28GHz微波頻率地圖………………………..……………31
圖3-8(g) ξ_2=0.4、f_2=6GHz微波頻率地圖、(h) ξ_2=0.4、f_2=-20GHz微波頻率地圖、(i) ξ_2=0.4、f_2=-28GHz微波頻率地圖………………………..……………32
圖3-9(a) ξ_2=0.2、f_2=6GHz微波功率地圖、(b) ξ_2=0.2、f_2=-20GHz微波功率地圖、(c) ξ_2=0.2、f_2=-28GHz微波功率地圖………………………..……………34
圖3-9(d) ξ_2=0.3、f_2=6GHz微波功率地圖、(e) ξ_2=0.3、f_2=-20GHz微波功率地圖、(f) ξ_2=0.3、f_2=-28GHz微波功率地圖………………………..……………35
圖3-9(g) ξ_2=0.4、f_2=6GHz微波功率地圖、(h) ξ_2=0.4、f_2=-20GHz微波功率地圖、(i) ξ_2=0.4、f_2=-28GHz微波功率地圖………………………..……………36
圖3-10串音現象…………………………………………………………………………..37
圖3-11固定ξ_1=0.3、f_1=70GHz、ξ_2=0.2、f_2=6GHz之下(a)變動ξ_1 的線寬變化圖、(b)變動ξ_2 的線寬變化圖 (c)變動f_1的線寬變化圖、(d)變動f_2的線寬變化圖…………………………………………………………………………..……..38
圖3-12(a)無雜訊的微波、(b)有雜訊的微波…………………………………………....39
圖3-13固定ξ_1=0.3、f_1=70GHz、ξ_2=0.2、f_2=6GHz之下(a)變動ξ_1的相位雜訊變動圖、(b)變動ξ_2的相位雜訊變動圖(c)變動f_1的相位雜訊變動圖、(d)變動f_2的相位雜訊變動圖………………………………………………………………………………….….40
圖3-14(a)~3-14(e)分別為第一次到第五次雜訊的微波譜圖;而3-14(f)為平均後的微波譜圖………………………………………………………………………………….…….41
圖4-1雙注入半導體雷射系統DSB-to-SSB conversion架構…………………………..42
圖4-2(a) ξ_1=0.2、f_1=40GHz的光譜圖、(d) ξ_1=0.2、f_1=40GHz、m=0.1、f_m=42GHz的DSB光譜圖。……………………………………………………………………………..43
圖4-2 (d) ξ_1=0.2、f_1=40GHz、m=0.3、f_m=42GHz的SSB光譜圖。(d) ξ_1=0.2、f_1=40GHz、m=0.3、f_m=40GHz的光譜圖。…………………………………………44
圖4-3(a) ξ_1=0.4、f_1=40GHz、ξ_2=0.2、f_2=-28GHz、m=0.1、f_m=60GHz的光譜圖、(b) ξ_1=0.4、f_1=40GHz、ξ_2=0.2、f_2=-28GHz、m=0.5、f_m=60GH光譜圖、 (c) ξ_1=0.4、f_1=40GHz、ξ_2=0.2、f_2=-28GHz、m=1.0、f_m=60GHz的光譜圖……………….45
圖4-3(d) ξ_1=0.4、f_1=40GHz、ξ_2=0.2、f_2=-28GHz、m=0.1、f_m=66GHz的光譜圖、(e) ξ_1=0.4、f_1=40GHz、ξ_2=0.2、f_2=-28GHz、m=0.5、f_m=66GH光譜圖、(f) ξ_1=0.4、f_1=40GHz、ξ_2=0.2、f_2=-28GHz、m=1.0、f_m=66GHz的光譜圖………………..46
圖4-3(g) ξ_1=0.4、f_1=40GHz、ξ_2=0.2、f_2=-28GHz、m=0.1、f_m=67.8GHz的光譜圖、(h) ξ_1=0.4、f_1=40GHz、ξ_2=0.2、f_2=-28GHz、m=0.5、f_m=67.8GH光譜圖、4-3(i) ξ_1=0.4、f_1=40GHz、ξ_2=0.2、f_2=-28GHz、m=1.0、f_m=67.8GHz的光譜圖4-3(j) 為(g)單獨看一根中心頻率的光譜圖。4-3(k) 為(h)單獨看一根中心頻率的光譜圖。4-3(l) 為(i)單獨看一根中心頻率的光譜圖。…………………………………………………......47
圖4-4(a) ξ_1=0.4、f_1=2GHz、ξ_2=0.2、f_2=-28GHz、m=0.1、f_m=25GHz的光譜圖、(b) ξ_1=0.4、f_1=2GHz、ξ_2=0.2、f_2=-28GHz、m=0.1、f_m=29GH光譜圖、(c) ξ_1=0.4、f_1=2GHz、ξ_2=0.2、f_2=-28GHz、m=0.1、f_m=29.8GHz的光譜圖、(d) ξ_1=0.4、f_1=2GHz、ξ_2=0.2、 f_2=-28GHz、m=0.1、f_m=29.8GH單獨看一根中心頻率的光譜圖…………………………………………………………………………………………..48
圖4-5(a) ξ_1=0.4、f_1=70GHz、ξ_2=0.2、f_2=-28GHz、m=0.1、f_m=93GHz的光譜圖、(b) ξ_1=0.4、f_1=70GHz、ξ_2=0.2、f_2=-28GHz、m=0.1、f_m=97GH光譜圖 、 (c) ξ_1=0.4、f_1=70GHz、ξ_2=0.2、f_2=-28GHz、m=0.1、f_m=97.8GHz的光譜圖、(d) ξ_1=0.4、f_1=70GHz、ξ_2=0.2、f_2=-28GHz、m=0.1、f_m=97.8GH單獨看一根中心頻率的光譜圖…………………………………………..........................................................49
圖4-6 ξ_1=0.3、f_1=70GHz、ξ_2=0.2、f_2=6GHz、m=0.1、f_m=64GHz的光譜圖….50
圖4-7(a) ξ_1=0.6、f_1=-100GHz、ξ_2=0.3、f_2=-20GHz、m=0.1、f_m=80GHz的光譜圖、(b) ξ_1=0.6、f_1=-99GHz、ξ_2=0.3、f_2=-20GHz、m=0.1、f_m=79GH的光譜圖、(c) ξ_1=0.6、f_1=-91GHz、ξ_2=0.3、f_2=-20GHz、m=0.1、f_m=71GHz的光譜圖…52
圖4-8(a) ξ_2=0.2、f_2=6GHz、m=0.1的SRR地圖分析、(b) ξ_2=0.2、f_2=-20GHz、m=0.1的SRR地圖分析、(c) ξ_2=0.2、f_2=-28GHz、m=0.1的SRR地圖分析……54
圖4-8(d) ξ_2=0.3、f_2=6GHz、m=0.1的SRR地圖分析、(e) ξ_2=0.3、f_2=-20GHz、m=0.1的SRR地圖分析、(f) ξ_2=0.3、f_2=-28GHz、m=0.1的SRR地圖分析……55
圖4-8(g) ξ_2=0.4、f_2=6GHz、m=0.1的SRR地圖分析、h) ξ_2=0.4、f_2=-20GHz、m=0.1的SRR地圖分析、(i) ξ_2=0.4、f_2=-28GHz、m=0.1的SRR地圖分析…….56
圖4-9主雷射1注入在高頻旁邊帶如上半部所示,主雷射注入在低頻旁邊帶如下半部所示………………………………………………………………………………………57
圖4-10主雷射2操作在ξ_2=0.4、f_2=-20GHz之下的功率衰減mapping…………..58
圖4-11固定 ξ_1 =0.3、f_1=70GHz、 ξ_2 =0.2、f_2=6GHz、m=0.1的條件下(a)變動ξ_1的線寬變動圖、(b)變動ξ_2的線寬變動圖、(c)變動f_1的線寬變動圖、(d)變動f_1的線寬變動.59
圖4-12固定〖 ξ_1 =0.3、f〗_1=70GHz、 ξ_2 =0.2、f_2=6GHz、m=0.1的條件下(a)變動ξ_1的相位變動圖、(b)變動ξ_2的相位變動圖 (c)變動f_1的相位變動圖、(d)變動f_2的相位變動圖…………………………………………………………………………………………..60
圖4-13(a)用以說明圖4-11(b)以及4-12(b)的線寬和相位雜訊部分的微波譜圖;(b)用以說明圖4-11(c)以及4-12(c)的線寬和相位雜訊部分的微波譜圖。…………………….61
圖4-14(a)~3-14(e)分別為第一次到第五次雜訊的微波譜圖;而4-14(f)為平均後的微波譜圖。……………………………………………………………………………………..62
圖4-15 固定f_1=70GHz、ξ2=0.2、 f_2=6GHz、m=0.1、f_m= 64GHz (a) ξ_1=0.3微波功率衰減、(b) ξ_1=0.5微波功率衰減、(c) ξ_1=0.7微波功率衰減………………………..64


參考文獻 參考文獻
[1]J.P. Yao, "Microwave Photonics." Lightwave Technology, Journal of 27(3): 314-335, 2009.
[2]U. Gliese, T. N. Nielsen, S. Norskov and K. E. Stubkjaer,"Multifunctional fiber-optic microwave links based on remote heterodyne detection." Microwave Theory and Techniques, IEEE Transactions on 46(5): 458-468, (1998).
[3]J. Harrison and A. Mooradian , "Linewidth and offset frequency locking of external cavity GaAlAs lasers." Quantum Electronics, IEEE Journal of 25(6): 1152-1155, 1989.
[4]R.T. Ramos and A. J. Seeds , "Fast heterodyne optical phase-lock loop using double quantum well laser diodes." Electronics Letters 28(1): 82-83, 1992.
[5]U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjaer, S. Lindgren and B. Broberg, "A wideband heterodyne optical phase-locked loop for generation of 3-18 GHz microwave carriers." Photonics Technology Letters, IEEE 4(8): 936-938, 1992.
[6]K.J. Williams., L. Goldberg, R. D. Esman, M. Dagenais and J. F. Weller, "6-34 GHz offset phase-locking of Nd:YAG 1319 nm nonplanar ring lasers." Electronics Letters 25(18): 1242-1243, 1989.
[7]Z.F. Fan and M. Dagenais , Optical generation of a mHz linewidth microwave signal with a discriminator-aided phase-locked loop using two semiconductor lasers. Antennas and Propagation Society International Symposium, 1997. IEEE., 1997 Digest.
[8]J.J. O'Reilly, P. M. Lane, R. Heidemann and R. Hofstetter, "Optical generation of very narrow linewidth millimetre wave signals." Electronics Letters 28(25): 2309-2311, 1992.
[9]J.J. O'Reilly, P. M. Lane, "Fibre-supported optical generation and delivery of 60 GHz signals." Electronics Letters 30(16): 1329-1330, 1994.
[10]P. Shen, N. J. Gomes, P. A. Davies, W. P. Shillue, P. G. Huggard and B. N. Ellison ,. "High-purity millimetre-wave photonic local oscillator generation and delivery," Microwave Photonics, 2003. MWP 2003 Proceedings. International Topical Meeting on.
[11]J.P. Yao, "Photonic Generation of Frequency-Tunable Microwave Signal Based on an Optoelectronic Oscillator." IEEE,2013..
[12]L. Goldberg, H. F. Taylor, J. F. Weller and D. M. Bloom, "Microwave signal generation with injection-locked laser diodes." Electronics Letters 19(13): 491-493, 1983.
[13]T.B. Simpson, J.M. Liu, K.F. Tai ,"Nonlinear dynamics induced by external optical injection in semiconductor lasers. " Quantum Semiclass.Opt.,vol.9,pp.765~784,1997.
[14]T. B. Simpson, J. M. Liu, A. Gavrielides, V. Kovanis and P. M. Alsing, "Period‐doubling route to chaos in a semiconductor laser subject to optical injection."Appl. Phys. Lett., Vol. 64, No.26,pp.3539~3541,1994.
[15]T.B. Simpson, J.M. Liu, A. Gavrielides, V. Kovanis, and P.M. Alsing "Period-doubling cascades and chaos in a semiconductor laser with optical injection. " Phys. Rev. A51, 4181,1994.
[16]V. Kovanis, A.Gavrielides, T. B. Simpson and J. M. Liu, "Instabilities and chaos in optically injected semiconductor lasers. "Appl. Phys. Lett. 67, 2780,1995.
[17]S.K. Hwang, J.M. Liu, "Dynamical characteristics of an optically injected semiconductor laser. "Optics Communications, Vol. 183, pp. 195–205,2000.
[18]T.B. Simpson, J.M. Liu, "Bandwidth Enhancement and Broadband Noise Reduction in Injection-Locked Semiconductor Lasers. "IEEE Photon. Lett., Vol. 7, No.7, pp.709-711,1995.
[19]J.M. Liu, H.F. Chen, X.J. Meng, T.B. Simpson, " Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking. " IEEE Photon. Technol. Lett., Vol. 9, No.10, pp.1325-1327,1997.
[20]T.B. Simpson, J.M. Liu, "Enhanced Modulation Bandwidth in Injection-Locked Semiconductor Lasers. " IEEE Photon. Technol. Lett., Vol. 9, No.10, pp.1322-1324,1997.
[21]X.J. Meng, T. Chau, M.C. Wu, "Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection. "Electron. Lett, Vol.34,No. 21,pp.2031-2032,1997.
[22]Y. Okajima, S.K Hwang, J.M Liu, "Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection. "Optics Communications, Vol. 219, pp. 357–364,2003.
[23]H.F. Chen, J.M. Liu, T.B. Simpson, "Response characteristics of direct current modulation on a bandwidth-enhanced semiconductor laser under strong injection locking. "Optics Communications, Vol. 173, pp. 349–355,2000.
[24]S.K. Hwang, J.M. Liu, and J.K. White, " 35-GHz Intrinsic Bandwidth for Direct Modulation in 1.3-m Semiconductor Lasers Subject to Strong Injection Locking. " IEEE Photon. Technol. Lett., Vol. 16, pp.972-974,2004.
[25]Y.S. Juan and F.Y. Lin, "Photonics Generation of Broadly Tunable Microwave Signals Utlizing a Dual-Beam Optically Injected Semiconductor Laser." IEEE Photonics Jounal, Vol. 3, pp.644-650 ,2011.
[26]X.Q. Qi and J.M. Liu, "Photonic Microwave Applications of the Dynamics of Semiconductor Lasers." Selected Topics in Quantum Electronics, IEEE Journal of 17(5): 1198-1211,2011.
[27]M. Almulla, X.Q. Qi and J.M. Liu, "Dynamics Maps and Scenario Transitions for a Semiconductor Laser Subject to Dual-Beam Optical Injection." Selected Topics in Quantum Electronics, IEEE Journal of 19(4): 1501108-1501108.,2013.
[28]W. Li., N.H. Zhu, L.X. Wang, J. H. Ke, S.F. Chen, X.Q. Qi, B.H. Zhang and L. Xie , "Frequency-Pushing Effect in Single-Mode Diode Laser Subject to External Dual-Beam Injection." Quantum Electronics, IEEE Journal of 46(5): 796-803,2010..
[29]X.Q. Qi and J.M. Liu , "Dynamics Scenarios of Dual-Beam Optically Injected Semiconductor Lasers." Quantum Electronics, IEEE Journal of 47(6): 762-769,2011.
[30]G.J. Simonis, K.G. Purchase," Optical generation, distribution, and control of microwaves using laser heterodyne. "IEEE Trans.Microwave Theory Tech, vol. 38, pp.667-669,1990.
[31]K. Yonenaga, N. Takachio, "A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems. "IEEE Photon. Technol. Lett., Vol. 5, pp.949-951,1993.
[32]S.K. Hwang, S.C. Chan, S.C. Hsieh and C.Y. Li,"Photonic microwave generation and transmission using direct modulation of stably injection-locked semiconductor lasers." Optics Communications 284(14): 3581-3589,2011.
[33]A. Yariv , P. Yeh, "Photonics Optical Electronics in Modern Communications,Sixth Edition. "Electronics Industry, Beijing,pp.130,2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-25起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw