進階搜尋


下載電子全文  
系統識別號 U0026-0708201417102000
論文名稱(中文) 材料製造與施工階段環境衝擊分析-以兩橋梁為例
論文名稱(英文) Analyzing environmental impacts caused by material manufacturing and construction – Two bridge examples
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 朱士傑
研究生(英文) Shin-Chieh Chu
學號 n66011477
學位類別 碩士
語文別 中文
論文頁數 87頁
口試委員 指導教授-張行道
口試委員-陳懿佐
口試委員-蔡雅雯
口試委員-楊士賢
中文關鍵字 生命週期評估  環境衝擊  碳負載進度表  橋梁工程  生態效率 
英文關鍵字 life cycle assessment  environmental impacts  CO2 loaded schedule  bridge construction  eco-efficiency 
學科別分類
中文摘要 隨著國家及經濟發展,道路、橋梁建設增加,但同時對環境造成衝擊。當橋梁設計採用不同型式或工法,將直接影響材料量、施工機具使用及時間,進而造成環境衝擊差異。
本研究以過程為基礎之生命週期評估方法,分析兩座不同工法之橋梁,其材料製造及施工階段之環境衝擊量。其中環境衝擊包含材料損耗、材料運輸油耗、施工機具油耗,及兩階段之廢棄物及碳排放量。經計算後,支撐先進(案例1)之材料製造階段碳排量為18,273噸,施工階段437噸,全跨預鑄吊裝(案例2)材料製造碳排量為13,980噸,施工307噸。兩案例材料製造之碳排放約佔97.3%,施工佔2.7%。
以四種衝擊項目比較兩案例之生態效率,包含能源、鋼筋廢棄物、混凝土廢棄物及碳排放,比較結果發現,案例1四種衝擊項目均較案例2差,因為案例1構件體積大,材料、機具油耗量多,成本及碳排量高。本研究建立之碳負載進度表,可從進度表知道碳排放軌跡,工程參與者可針對碳排放較高之期間,探討來源並採取措施,可降低施工階段油耗量。
最後以四種不確定因素討論本研究環境衝擊計算結果,與文獻數字之差異原因。因國內橋梁文獻數據不完整,需多方假設,且碳排放係數及單位能耗數據不足,需以次級數據計算環境衝擊量。建議後續研究可針對工程預算表內容之項目數量計算環境衝擊,並評估多個案例並比較,分析較準確而差異會減少。
英文摘要 Abstract
Analyzing environmental impacts caused by material manufacturing and construction – Two bridge examples

Chu Shin Chieh
Andrew S. Chang
Department of Civil Engineering
National Cheng Kung University

SUMMARY

With a nation’s economic development, road and bridge construction has increased gradually. At the same time, it causes environment impact. When using different construction methods to design bridge, it will affect mate¬rial and energy use of equipment, leading to different environmental impacts.
This study used process-based life cycle assessment method to analyze two bridges in environmental impacts from material manufacturing and construction phases. The results show that MSS method (Case 1) emits 18,273 tons of CO2 in manufacturing phase and 437 tons of CO2 in construction phase. FPLM method (Case 2) emits 13,975 and 307 tons of CO2 in two phases, respectively. The carbon emission of manufacturing phase is 97.3% and construction phase is 2.7%.
Four environmental impact items of eco-efficiency were used to compare differences between the two cases. They are energy consumption, CO2 emission, steel and concrete wastes. The results show that four types of impact of Case 1 are worse than Case 2. This is because Case 1 has larger bridge components than Case 2. Case 1 uses more material and energy, which lead to higher construction cost and CO2 emission.
Finally, a CO2 loaded schedule was established to demonstrate the CO2 emission of construction phase on the construction schedule. Construction participants can focus on the periods of higher CO2 emission to identify the causes and take actions to reduce fuel consumption.

Keywords: life cycle assessment, environmental impacts, CO2 loaded schedule, bridge construction, eco-efficiency

INTRODUCTION

With the nation’s economic development, roadway construction is increasing. However, rapid development causes larger environmental impacts. In order to decrease impacts, roadway construction is required to reduce energy consumption and CO2 emissions. Su-hua highway project invested NT$100 million to implement carbon footprint and inventory the carbon footprint of its construction (Lin, 2013).

Road construction can be divided into pavement, tunnels, and bridges to compare their CO2 emission per unit length, and bridge is highest (Seo and Kim 2013). However, material manufacturing phase emits more CO2 than construction phase. Material is produced by manufacturing, but people would consider that the CO2 emissions of material is caused in construction.

Reviewing the CO2 emission research of bridges in Taiwan, few studies discuss the material manufacturing and construction phases separately. Carbon reduction measures for construction phase generally focus on improving construction efficiency, without showing how to reduce carbon emission on the site. Therefore, to utilize construction schedule combined with carbon emissions, it is useful for construction participants to manage the CO2 emission.

This research has two purposes: (1) Evaluate environmental impacts for the material manufacturing and construction phases of two bridges. (2) Relate construction carbon emission with time to propose the CO2 loaded schedule.

MATERIALS AND METHODS

This study reviewed the literature and collected data at first, then used two bridge examples as cases to study, explained below.

(1) Literature review. Environmental impact literature relating to roadway or bridges was reviewed. To identify the environmental impact items for the study, the framework of life cycle assessment and the method and definition of eco-efficiency were prepared for case analysis and comparison of two bridges.

(2) Data collection. Two bridge cases were collected from domestic literature, about schedule information of component construction, operation hours of equipment and so on. The rule of date localization and temporality were followed to collect unit energy consumption of equipment and carbon emission factor from the domestic research.

(3) Process-based LCA. After collecting two bridge cases based on above-mentioned two steps, the process-based LCA was used to analyze superstructure and substructure construction processes of the two bridges. The environmental impacts of two phases were analyzed and compared separately, then the two cases were evaluated with eco-efficiency to establish CO2 loaded schedule.

RESULTS AND DISCUSSION

This study analyzed the environmental impact of two bridges. The results show that the CO2 emission, diesel consumption of material transportation, energy consumption of equipment, and wastes of case 1 and 2 are 18,710 tons, 14,281tons, 7,751 liters, 6,226 liters, 163,718 liters, 115,782 liters and 1,742 tons, 1,410 tons respectively. In addition to the environmental impact of material manufacturing and construction, the eco-efficiency of four environmental impact items were analyzed and compared. The CO2 loaded schedule was also established. Then the differences caused by four uncertain elements in environmental impact were analyzed.

The data needed to establish the CO2 loaded schedule are number of days, and operation hour for equipment of each construction activity. The unit energy consumption and carbon emission factor of different equipment are also needed. The CO2 loaded schedule can help construction participants manage their environmental impact in construction phase, and minimize the energy consumptions and carbon emissions.

CONCLUSION

The characteristic of this study is different from other carbon emission research. This study evaluated two phases of environmental impacts for two bridges by utilizing LCA framework. Each step of the processes was explained and the numbers were calculated in detail. Moreover, data requirements and reasonable assumptions were also explained. In comparing the difference of two cases in the LCA processing, it is easier for users to find out the missed details of LCA.
論文目次 目錄
摘要 iii
Abstract iv
誌謝 vii
目錄 viii
表目錄 x
圖目錄 xii
第1章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法與步驟 2
1.3 研究範圍與限制 4
第2章 文獻回顧 7
2.1 生命週期評估 7
2.1.1 生命週期評估階段 7
2.1.2 生命週期評估方法 8
2.2 道路環境衝擊 10
2.2.1 能源消耗 11
2.2.2 溫室氣體排放 12
2.2.3 廢棄物 15
2.3 橋梁成本效益與生態效率 15
2.3.1 橋梁工法之成本效益 15
2.3.2 生態效率 16
2.3.3 生態效率指標 17
第3章 生命週期評估前期作業 19
3.1 生命週期評估第一階段 19
3.1.1 生命週期評估階段 19
3.1.2 案例系統邊界界定 20
3.1.3 功能單位及假設 22
3.2 數據蒐集與計算準備 23
3.2.1 製造階段材料 23
3.2.2 施工階段機具 24
3.2.3 環境衝擊係數 27
3.2.4 環境衝擊計算式 29
第4章 橋梁環境衝擊分析 31
4.1 兩橋梁案例 31
4.1.1 支撐先進工法(案例一) 31
4.1.2 全跨預鑄吊裝工法(案例二) 33
4.2 材料用量、運輸與環境衝擊推導 34
4.2.1 兩案例之材料用量 34
4.2.2 材料運輸油耗量 36
4.2.3 材料碳排放量 38
4.2.4 製造階段廢棄物 42
4.3 機具使用及環境衝擊推導 43
4.3.1 兩案例施工機具作業 43
4.3.2 施工作業碳排放量 48
4.3.3 施工階段廢棄物量 50
第5章 橋梁生態效率分析與計算過程討論 52
5.1 環境衝擊比較 52
5.1.1 輸入輸出比較 52
5.1.2 碳排放比較 56
5.1.3 施工進度碳排放 58
5.2 生態效率比較 61
5.2.1 建立生態效率模式 61
5.2.2 橋梁之製造及施工成本 62
5.2.3 生態效率分析比較 66
5.3 評估計算討論與施工進度碳排放 71
5.3.1 評估與計算過程討論 71
5.3.2 實際案例之LCA資料需求及假設 73
5.3.3 碳負載進度表 77
第6章 結論與建議 80
6.1 結論 80
6.2 建議 82
參考文獻 84
參考文獻 參考文獻
英文文獻
1. Asian Development Bank (2010). Methodology for estimating carbon footpring of road projects- case study, India.
2. Bilec, M., Ries, R., Matthews, H. S. and Sharrard, A. L. (2006). “Example of a hybrid life-cycle assessment of construction processes.” Journal Infrastructure System, Vol.12, No. 4, pp. 207-215.
3. Cass, D. and Mukherjee, A. (2011). “Calculation of Greenhouse Gas Emissions for Highway Construction Operations by Using a Hybrid Life-Cycle Assessment Approach: Case Study for Pavement Operations.” Journal of Construction Engineering and Management, ASCE, Vol. 137, No. 11, pp. 1015~1025.
4. Cellura, M., Longo, S. and Mistretta, M. (2011). “Sensitivity analysis to quantify uncertainty in Life Cycle Assessment: The case study of an Italian tile.” Journal of Renewable and Sustainable Energy Reviews, Vol. 15, pp. 4697-4705.
5. Consoli, F. (1993), Guidelines for life-cycle assessment: A “code of practice.” Pensacola, USA.
6. Crawford, R. H. (2008). “Validation of a hybrid life cycle inventory analysis method.” Journal of Environmental Management, Vol.88, No.3, pp. 496-506.
7. Han, S., Mok, K. and Choi, S. (2014). “The implementation of clean development mechanism (CDM) in the construction and built environment industry.” Journal of Energy Policy, Vol. 65, pp. 512-523.
8. Hendrickson, C.T., Lave, L.B. and Matthews, H.S. (2006). Environmental life cycle assessment of goods and services: An input output approach, Resources For The Future, Washington DC.
9. Hur, T., Kim, I. and Yamamoto, R. (2004). “Measurement of green productivity and its improvement.” Journal of Cleaner Production, Vol. 12, pp. 673-683.
10. IPCC (Intergovermenmental Penel on Climate Change.) (2007). “The Physical Science Basis-Summary for Policy Makers.” http://www.ipcc.ch/SPM2feb07.pdf, accessed on 15th June, 2014.
11. ISO 14040 (2006). Environmental management. Life cycle assessment- Principles and framework.
12. Jasch, C. (2000). “Environmental performance evaluation and indicators.” Journal of Cleaner Production, Vol. 8, pp. 79-88.
13. Mohapatra, P. K., Siebel, M. A., Gijzen, H. J., van der Hoek, J. P. and Groot, C.A. (2002). “Impoving eco-efficiency of Amsterdam water supply: A LCA approach.” Journal of Water Supply, Vol. 54, No. 4, pp. 217-227.
14. Muench, S. T., Anderson, J. L., Hetfield, J. P., Koester, J. R. and Soderlund, M. (2011). Greenroads Manual v1.5. Seattle, WA: University of Washington.
15. PAS 2050 (2008). Specifi cation for the assessment of the life cycle greenhouse gas emissions ofgoods and services.
16. Rajendran, S. and Gambatese, J. A. (2007). “Solid waste generation in asphalt and reinforced concrete roadway life cycle.” Journal of Infrastructure System, Vol. 13, No. 4, pp. 88-96.
17. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W. P., Suh, S., Weidema, B. P. and Pennington, D. W. (2004). “Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications” Journal of Environment International, Vol. 30, pp.701-720.
18. Seo, Y. and Kim, S. M. (2013). “Estimation of materials-induced CO2 emission from road construction in Korea.” Journal of Renewable and Sustainable Energy Reviews, Vol. 26, pp. 625-631.
19. Stripple, H. (2001). Life cycle assessment of road. A pilot study for inventory analysis. IVL Swedish environmental research institute.
20. Truc, H. (2012). Eco-Efficiency Analysis for Roadway projects. Master Thesis, Civil Engineering and Management, National Cheng-Kung University.
21. United Nations economic and social commission for Asia and the Pacific (UNESCAP) (2009). Eco-efficiency indicators: measuring resource-use efficiency and the impact of economic activities on the environment.
22. Verfaillie, H. A. and Bidwell, R. (2000). Measuring eco-efficiency: a guide to reporting company performance. World Business Council for Sustainable Development.
23. VicRoads (2008). Victoria’s first carbon neutral roadconstruction project, State Government of Victoria, Australia.
24. Wiedmann, T. and Minx, J. (2008). A definition of ‘carbon footprint. Nova Science Publishers, Hauppauge NY, USA.
25. Zapata, P., and Gambatese, J. A. (2005). “Energy consumption of asphalt and reinforced concrete pavement materials and construction.” Journal of Infrastructure Systems, Vol. 11, No. 1, pp. 9-20.



中文文獻
1. 公路總局網站, http://www.thb.gov.tw/epaper/Sites/Page/12?pgid=335/, 2014年6月15日網上資料。
2. 王水杉(1999),工程施工管理-施工計畫研擬及執行,內政部營建署
3. 王明倫(2012),透水混凝土設計品管應用之初步研究-以公路路面為例,朝陽科技大學營建工程系碩士論文。
4. 王彥智(2010),營建節能減碳數字的資料品質評估,國立成功大學土木管理研究所碩士論文。
5. 王熙崑(1998),從韓國高鐵工地所見,對籌劃興建中之台灣高鐵的期許,珊嵐基金會,台北。
6. 交通部運輸研究所(2011),交通運輸工程碳排放量推估模式建立與效益分析之研究。
7. 行政院公共工程委員會(2008),永續公共工程-節能減碳政策白皮書。
8. 行政院環保署(2010),產品與服務碳足跡計算指引。
9. 行政院環保署網站, http://www.epa.gov.tw/, 2013年12月20日網上資料。
10. 佘品蓁(2012),道路設計因子對行車碳排放影響之研究,國立中央大學營建管理研究所碩士論文。
11. 吳建憲(2005),水泥混凝土蒸氣養護成效對施工成本效益之研究-以台灣高鐵C215標為例,國立中央大學土木研究所碩士論文。
12. 李俊憲(2002),結合空間分析與專家系統技術在橋梁規劃自動化之應用,國立中央大學土木工程學系博士論文。
13. 林彥宇(2014),「台61八棟寮九塊厝計畫工程碳足跡盤查與輔導實務經驗分享」,公路工程碳管理制度及實務研討會,5月9日,台北市交通部公路總局。
14. 林思翰(2013),綠道路認證中施工活動項目執行之困難評估與原因分析,國立成功大學土木管理研究所碩士論文。
15. 邱守巒(1999),橋梁自動化-全跨預鑄逐跨吊裝與逐跨推進工法,台灣營建研究院,台北。
16. 施心皓(2003),生態效益應用於生態化工業區之績效評估研究,南華大學環境管理研究所碩士論文。
17. 施勵行及劉勝傑(2003),「永續性產品的評估-以顯示器產品為例」,工業污染防治,第85卷,142-163頁。
18. 柳中明(1997),「能源與二氧化碳排放減量」,全球變遷通訊,第十六期。
19. 張又升(2002),建築物生命週期二氧化碳減量評估,國立成功大學建築研究所博士論文。
20. 陳一昌等(2012),交通運輸工程碳排放量推估模式建立與效益分析之研究,交通部運輸研究所。
21. 陳光輝(2003),橋梁全套管基樁的施工資源組合分析,朝陽科技大學營建工程系碩士論文。
22. 陳昭秀(2013),橋梁工程碳排放量案例分析之研究,國立中央大學營建管理研究所碩士論文。
23. 陳家豪(2004),印刷電路板之簡易生命週期評估研究,國立成功大學機械工程所碩士論文。
24. 陳啟明等(2013),應用公共工程經費電腦估價系統(PCCES)架構估算工程二氧化碳排放量委託研究案成果報告,行政院公共工程委員會委託研究計畫。
25. 黃正忠及施延熙(2001),生態效益:主導21 世紀的經營理念,經濟部工業局,台北。
26. 黃正翰(2003),結合學習曲線理論與電腦模擬技術應用於支撐先進工法與全跨預鑄吊裝工法之規劃分析,國立中興大學土木研究所碩士論文。
27. 楊英賢(2008),生命週期評估與不確定分析應用於火力電廠與燃料選擇,國立成功大環境工程博士論文。
28. 溫室氣體查驗指引(2010),行政院環保署,http://ghgregistry.epa.gov.tw/ , 2013年12月10日網上資料。
29. 經濟部能源局網站, www.moeaboe.gov.tw/, 2013年11月15日網上資料。
30. 蔡林海(2009),低碳經濟—綠色革命與全球創新競爭大格局,經濟科學出版社,北京。
31. 蔡雯雯(2011),以生命週期評估與生命週期成本探討塑木之生態效益研究,嘉藥科技大學環境工程與科學系碩士論文。
32. 鄭文隆(2004),第二高速公路興建專輯-橋梁工程篇,交通部台灣區國道新建工程局,台北。
33. 鄭道明及陳光輝(2004),「全套管基樁施工資源組合分析」,台灣公路工程,第30卷,第九期,2-19頁。
34. 蕭新祿(2006),預力混凝土箱型橋梁之上部結構工法評選研討,逢甲大學土木工程學系碩士論文。
35. 蕭慧娟(2014),「我國產品碳足跡標示制度推動現況」,公路工程碳管理制度及實務研討會,5月9日,台北市交通部公路總局。
36. 藍啟榮(2004),橋樑施工支撐先進工法與全跨預鑄吊裝工法成本之比較,朝陽科技大學營建工程系
37. 魏佩如(2010),產品碳足跡計算不確定性分析之研究,國立台北科技大學環境與管理研究所碩士論文。
38. 鐘敦沛等(2012),研訂公共工程計畫相關審議基準及綠色減碳指標計算規則,行政院公共工程委員會專案研究計畫。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw