進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0708201316100200
論文名稱(中文) 銅銦鎵硒四元合金靶材濺鍍製程與後處理之探討
論文名稱(英文) Cu(In, Ga)Se2 thin films sputtering by a single quaternary target and different annealing on thin film
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 101
學期 2
出版年 102
研究生(中文) 葉權寬
研究生(英文) Cyuan-Kuan Yeh
學號 L76004200
學位類別 碩士
語文別 中文
論文頁數 110頁
口試委員 口試委員-賴韋志
口試委員-吳宛玉
口試委員-周邦彥
指導教授-陳昭宇
中文關鍵字 銅銦鎵硒  太陽能電池  硫化  硒化  濺鍍 
英文關鍵字 Cu(In,Ga)Se2  solar cell  sulfurizing  selenizing  sputtering 
學科別分類
中文摘要 CIGS薄膜太陽能電池因具有極高的光吸收係數、直接能隙、抗輻射、可調變能帶及優異的材料穩定性等優勢,被認為是極具潛力的薄膜太陽能材料。
本文使用銅銦鎵硒(CIGSe)四元合金靶材,藉由真空濺鍍系統來製作CIGS吸收層。在常溫之下,利用銅銦鎵硒四元合金靶材搭配150W濺鍍功率,再以RF濺鍍2.3um的薄膜,然後進行3.8torr真空退火,使薄膜在CIGSe的主要晶體方向(112)有大幅度成長,晶體成長至0.46um,成分比例為Cu1In0.62Ga0.25Se1.68,相當接近理想的Cu1In0.7Ga0.3Se2比例,其能隙為1.2 ~ 1.3eV,適合作為太陽能電池的吸收層材料。
為了提升吸收層的品質,在濺鍍完吸收層後,藉由在含S的氣壓下進行銅銦鎵硒薄膜的硫化。薄膜經由低壓硫化後,晶體成長至0.24um,成分比例為Cu1In0.51Ga0.27Se1.05S0.57,其能隙為1.2~1.3eV,亦適合作為太陽能電池的吸收層材料。
英文摘要 CIGS thin film solar cells has been considered to be highly promising solar cell material. Because it is a material with high absorption coefficient, direct band-gap, anti-radiation, tunable band-gap and high material stability.
In this study, Cu(In,Ga)Se2 thin film were deposited by sputtering a single quaternary CIGSe target. About 2.3um CIGSe layers were deposited on the soda-lime glass by RF 150W sputtering at room temperature, then annealed at 3.8torr vacuum pressure. After annealing, the films grow with a (112)-preferred orientation and the grain size was 0.46um. The proportion of ingredient was Cu1In0.62Ga0.25Se1.68, that is close to ideal proportion Cu1In0.7Ga0.3Se2. The band-gap was 1.2 ~ 1.3eV. It was suitable to be absorption layers of the solar cell .
In order to improve the quality of the absorption layers, as deposition films were sulfurizing at low working pressure. After sulfurizing, the grain size was 0.24um and the proportion of ingredient was Cu1In0.51Ga0.27Se1.05S0.57. The band-gap was 1.2 ~ 1.3eV. It was suitable to be absorption layers of the solar cell .
論文目次 摘要…Ⅰ
Abstract…Ⅱ
誌謝…Ⅲ
目錄…Ⅳ
表目錄…Ⅵ
圖目錄…Ⅶ
第一章 緒論…1
1.1 前言…1
1.2 太陽能電池種類與應用…2
1.3 CIGS 太陽能電池發展…10
1.4 研究動機與目的…11
第二章 基本理論與文獻回顧…12
2.1太陽能電池原理…12
2.2 銅基黃銅礦材料特性…17
2.3 CIGS 電池結構、原理與各層特性…21
2.4 CIGS 吸收層製作…30
第三章 實驗方法與分析…41
3.1 實驗方法…41
3.2 製程設備…45
3.3 分析儀器…49
第四章 實驗結果與討論…56
4.1 濺鍍功率對銅銦鎵硒(CIGSe)薄膜的影響…56
4.2 真空退火對銅銦鎵硒(CIGSe)薄膜的影響…66
4.3 硫化後處理對銅銦鎵硒(CIGSe)薄膜的影響…76
4.4 比較不同後處理對銅銦鎵硒(CIGSe)薄膜的影響…94
第五章 結論與建議…104
第六章 參考文獻…106
參考文獻 1.Green, M. A., Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications 2001, 9 (2), 123–135.
2.Kemell, M.; Ritala, M.; Leskelä, M., Thin Film Deposition Methods for CuInSe2 Solar Cells. Critical Reviews in Solid State and Materials Sciences 2005, 30 (1), 1-31.
3.Repins, I.; Contreras, M. A.; Egaas, B.; DeHart, C.; Scharf, J.; Perkins, C. L.; To, B.; Noufi, R., 19•9%-efficient ZnO/CdS/CuInGaSe2solar cell with 81•2% fill factor. Progress in Photovoltaics: Research and Applications 2008, 16 (3), 235-239.
4.Jackson, P.; Hariskos, D.; Lotter, E.; Paetel, S.; Wuerz, R.; Menner, R.; Wischmann, W.; Powalla, M., New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications 2011, 19 (7), 894-897.
5.Peumans, P.; Forrest, S. R., Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Applied Physics Letters 2001, 79 (1), 126-128.
6.Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials 2005, 15 (10), 1617-1622.
7.O'Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740.
8.K. Nazeeruddin, M.; Pechy, P.; Gratzel, M., Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. Chemical Communications 1997, 0 (18), 1705-1706.
9.Mickelsen, R. A.; Chen, W. S., Development of a 9.4% efficient thin-film CuInSe2/CdS solar cell. In 15th Photovoltaic Specialists Conference, 1981; pp 800-804.
10.Hedstrom, J.; Ohlsen, H.; Bodegard, M.; Klyner, A.; Stolt, L.; Hariskos, D.; Ruckh, M.; Schock, H.-W. In ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance, Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE, 10-14 May 1993; 1993; pp 364-371.
11.Contreras, M. A.; Tuttle, J.; Gabor, A.; Tennant, A.; Ramanathan, K.; Asher, S.; Franz, A.; Keane, J.; Wang, L.; Scofield, J.; Noufi, R. In High efficiency Cu(In,Ga)Se2 based solar cells: processing of novel absorber structures, Photovoltaic Energy Conversion, 1994., Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference - 1994, 1994 IEEE First World Conference on, 5-9 Dec 1994; 1994; pp 68-75 vol.1.
12.Sze, S. M.; Ng, K. K., Physics of Semiconductor Devices. Wiley-Interscience: 2007.
13.Haug, F.-J., Development of Cu(In,Ga)Se2 Superstrate Thin Film Solar Cells. SWISS FEDERAL INSTITUTE OF TECHNOLOGY: 2001.
14.Markvart, T.; Castafier, L., Solar Cells - Materials, Manufacture and Operation. 2005.
15.Haalboom, T.; Godecke, T.; Ernst, F.; Ruhle, M.; Herberholz, R.; Schock, H. W.; Beilharz, C.; Benz, K. W., Phase relations and microstructure in bulk materials and thin films of the ternary system Cu-In-Se. In Ternary and Multinary Compounds, Tomlinson, R. D.; Hill, A. E.; Pilkington, R. D., Eds. Iop Publishing Ltd: Bristol, 1998; Vol. 152, pp 249-252.
16.Herberholz, R.; Rau, U.; Schock, H. W.; Haalboom, T.; Gödecke, T.; Ernst, F.; Beilharz, C.; Benz, K. W.; Cahen, D., Phase segregation, Cu migration and junction formation in Cu(In, Ga)Se2. The European Physical Journal - Applied Physics 1999, 6 (02), 131-139.
17.Abou-Elfotouh, F.; Dunlavy, D. J.; Coutts, T. J., Intrinsic defect states in CuInSe2 single crystals. Solar Cells 1989, 27 (1–4), 237-246.
18.Noufi, R.; Axton, R.; Herrington, C.; Deb, S. K., Electronic properties versus composition of thin films of CuInSe2. Applied Physics Letters 1984, 45 (6), 668-670.
19.Singh, U. P.; Patra, S. P., Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2 Solar Cells. International Journal of Photoenergy 2010, 2010, 1-19.
20.Potter, R. R.; Eberspacher, C.; Fabick, L. B., Device analysis of CuInSe2/(Cd,Zn)S/ZnO solar cells. In Photovoltaic Specialists Conference, 18th, Las Vegas, NV, October 21-25, 1985, Conference Record (A87-19826 07-44). New York, Institute of Electrical and Electronics Engineers, Inc., 1985, p. 1659-1664., 1985; pp 1659-1664.
21.Poortmans, J.; Arkhipov, V., Thin Film Solar Cells: Fabrication, Characterization and Applications. John Wiley & Sons: 2006.
22.Duchemin, S.; Chen, V.; Yoyotte, J. C.; Bougno, J.; Savelli, M., Backwall CdS(n)-CuInSe2(p) sprayed solar cells. In Proceedings of the 8th European Photovoltaic Solar Energy Conference, Florence, Italy, 1988; pp 1038-1042.
23.Nakada, T.; Okano, N.; Tanaka, Y.; Fukuda, H.; Kunioka, A., Superstrate-type CuInSe2 with chemically deposited CdS window layers. In Proceedings of the IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii, USA, 1994; pp 95-98.
24.Nakada, T.; Mise, T., High-efficiency superstrate type cigs thin film solar cells with graded bandgap absorber layers. In Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001; pp 1027-1030.
25.Rau, U.; Schock, H. W., Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges. Appl Phys A 1999, 69 (2), 131-147.
26.Scofield, J. H.; Duda, A.; Albin, D.; Ballard, B. L.; Predecki, P. K., Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films 1995, 260 (1), 26-31.
27.Raud, S.; Nicolet, M. A., Study of the CuInSe2/Mo thin film contact stability. Thin Solid Films 1991, 201 (2), 361-371.
28.Kohara, N.; Nishiwaki, S.; Hashimoto, Y.; Negami, T.; Wada, T., Electrical properties of the Cu(In,Ga)Se2/ MoSe2/Mo structure. Solar Energy Materials and Solar Cells 2001, 67 (1–4), 209-215.
29.Jones, K. M.; Kazmerski, L. L.; Yacobi, B. G., Transmission electron microscopy and X-ray photoelectron spectroscopy investigations of the MoCuInSe2 interface. Thin Solid Films 1984, 116 (1-3), L59-L62.
30.Wada, T.; Kohara, N.; Negami, T.; Nishitani, M., Chemical and structural characterization of Cu(In, Ga)Se2/Mo interface in Cu(In, Ga)Se2 solar cells. Japanese Journal of Applied Physics, Part 2: Letters 1996, 35 (10 PART A), L1253-L1256.
31.Abou-Ras, D.; Kostorz, G.; Bremaud, D.; Kälin, M.; Kurdesau, F. V.; Tiwari, A. N.; Döbeli, M., Formation and characterisation of MoSe2 for Cu(In,Ga)Se2 based solar cells. Thin Solid Films 2005, 480–481 (0), 433-438.
32.Romeo, A.; Terheggen, M.; Abou-Ras, D.; Bätzner, D. L.; Haug, F. J.; Kälin, M.; Rudmann, D.; Tiwari, A. N., Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications 2004, 12 (2-3), 93-111.
33.Kaelin, M.; Rudmann, D.; Tiwari, A. N., Low cost processing of CIGS thin film solar cells. Solar Energy 2004, 77 (6), 749-756.
34.Luque, A.; Hegedus, S., Handbook of Photovoltaic Science and Engineering, Second Edition. John Wiley & Sons: 2011.
35.Shafarman, W. N.; Zhu, J., Effect of substrate temperature and depostion profile on evaporated Cu(InGa)Se2 films and devices. Thin Solid Films 2000, 361–362 (0), 473-477.
36.Mickelsen, R. A.; Chen, W. S., High photocurrent polycrystalline thin-film CdS/CuInSe2 solar cell. Applied Physics Letters 1980, 36 (5), 371-373.
37.Mattox, D. M., Handbook of Physical Vapor Deposition (PVD) Processing, Second Edition. Elsevier: 2010.
38.Kessler, J.; Chityuttakan, C.; Lu, J.; Schöldström, J.; Stolt, L., Cu(In,Ga)Se2 thin films grown with a Cu-poor/rich/poor sequence: growth model and structural considerations. Progress in Photovoltaics: Research and Applications 2003, 11 (5), 319-331.
39.Schön, J. H.; Alberts, V.; Bucher, E., Structural and optical characterization of polycrystalline CuInSe2. Thin Solid Films 1997, 301 (1–2), 115-121.
40.Liu, W.; Tian, J.-G.; He, Q.; Li, F.-Y.; Li, C.-J.; Sun, Y., In-situ electrical resistance measurement of the selenization process in the CuInGa–Se system. Thin Solid Films 2010, 519 (1), 244-250.
41.Schock, H.-W.; Noufi, R., CIGS-based solar cells for the next millennium. Progress in Photovoltaics: Research and Applications 2000, 8 (1), 151-160.
42.Rincon, C.; Ramirez, F. J., Lattice vibrations of CuInSe2 and CuGaSe2 by Raman microspectrometry. Journal of Applied Physics 1992, 72 (9), 4321-4324.
43.Shi, J. H.; Li, Z. Q.; Zhang, D. W.; Liu, Q. Q.; Sun, Z.; Huang, S. M., Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target. Progress in Photovoltaics: Research and Applications 2011, 19 (2), 160-164.
44.Lin, Y. C.; Ke, J. H.; Yen, W. T.; Liang, S. C.; Wu, C. H.; Chiang, C. T., Preparation and characterization of Cu(In,Ga)(Se,S)2 films without selenization by co-sputtering from Cu(In,Ga)Se2 quaternary and In2S3 targets. Applied Surface Science 2011, 257 (9), 4278-4284.
45.Contreras, M. A.; Egaas, B.; King, D.; Swartzlander, A.; Dullweber, T., Texture manipulation of CuInSe2 thin films. Thin Solid Films 2000, 361–362 (0), 167-171.
46.Zhang, S. B.; Wei, S. H., Reconstruction and Energetics of the Polar (112) and (112) Versus the Non-Polar (220) Surfaces of CuInSe2. Physical Review B 2002, 65 (8), 081402.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-15起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw