進階搜尋


下載電子全文  
系統識別號 U0026-0708201311020800
論文名稱(中文) 含邊緣脫層裂紋之疊層複合材料樑受混合模式彎矩之破壞力學分析
論文名稱(英文) Fracture Mechanics Analysis of a Laminated Composite Beam Containing Edge Delamination Under Mixed-Mode Bending
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 華啟安
研究生(英文) Chi-An Hua
學號 n16004349
學位類別 碩士
語文別 中文
論文頁數 73頁
口試委員 指導教授-屈子正
口試委員-褚晴暉
口試委員-陳國聲
口試委員-何旭彬
中文關鍵字 脫層  彈性基底  雙懸臂樑  正交性材料  應變能釋放率  疲勞  有限元素分析 
英文關鍵字 delamination  elastic foundation  double cantilever beam  orthotropic material  strain energy release rate  fatigue  finite element method 
學科別分類
中文摘要 本文探討含邊緣脫層之疊層複合樑問題中,非等向性界面裂紋受混合模式負載下裂紋之破壞力學參數,包含應變能釋放率及相位角。以混合模式彎矩問題為基礎,將雙懸臂樑分為二個獨立的模式一與模式二問題,其中考慮彈性基底修正以及剪切效應的影響,求得模式一與模式二問題的裂紋開口位移量及撓度,並藉由破壞力學理論推導出一組與裂紋長度無關之應變能釋放率解析解以及相位角與外部負載的關係。將理論計算結果與有限元素法配合虛擬裂紋閉合理論所得到之二維界面裂紋問題應變能釋放率相互驗證比較,確認解析解的準確性。最後,利用相位角與外部之力之比值得到固定相位角下的邊界條件,模擬疲勞裂紋成長實驗在固定相位角下的反應,藉此提出一套量測界面疲勞裂紋脫層成長行為的量測方法。
英文摘要 The problem of an orthotropic double cantilever beam (DCB) under mixed-moded loading is studied in this thesis. The fracture mechanics parameters including the strain energy release rate and the stress intensity factors for the crack tip is solved by using beam on elastic foundation theory with the modification to consider shear effect by using Lekhnitskii’s anisotropic stress potential. In addition, the relationship between compliance and crack length is also derived. The strain energy release rate and the phase angle are obtained as a function of the DCB’s compliance. The analytical solutions are verified by comparing to finite element solutions for cases of homogeneous and multilayered orthotropic beam. Based on the analytical solutions obtained in this study, an experimental setup is proposed for characterizing the fatigue growth rate of the DCB crack under mixed-moded loading with a constant phase angle, which is achieved by continuously varying the loading ratio on the cantilever arms according to the DCB compliance reading.
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VIII
符號說明 X
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究目的與方法 5
1.4 論文架構 6
第二章 理論推導 7
2.1 混合模式彎曲問題 7
2.2 等效材料參數 9
2.3 模式一問題 13
2.4 模式二問題 24
2.5 破壞力學參數 27
第三章 驗證與比較 36
3.1 模式一問題結果比較 37
3.2 模式二問題結果比較 41
3.3 混合模式疊層複合樑之結果比較 45
第四章 疲勞裂紋成長 48
4.1 疲勞裂紋成長理論 48
4.2 界面疲勞裂紋成長 50
4.3 固定相位角之疲勞裂紋成長實驗 54
第五章 結論 66
參考文獻 68
參考文獻 [1] X. Wu, K. W. Pail and S. N. Bhandarkar, “To cut or not to cut: a thermomechanical stress analysis of polyimide thin-film on ceramic structures,” IEEE Transactions on Components, Packaging, amd Manufacturing Technology, Vol. 18, pp. 150-153, 1995.
[2] J. L. Beuth and S. H. Narayan, “Residual stress-driven delamination in deposited multi-layers,” International Journal of Solid and Structures, Vol. 33, pp. 65-78, 1996.
[3] S. P. Timoshenko and J. N, Goodier, Theory of Elasticity, McGraw-Hill Book Company, Singapore, 1970.
[4] G. R. Cowper, “The shear coefficient in Timoshenko’s beam theory,” Journal of Applied Mechanics, Vol. 33, pp. 335-340, 1966
[5] A. Aktas, “Determination of the deflection function of a composite cantilever beam using theory of anisotropic elasticity,” Mathematical and Computation Applications, Vol. 6, No. 1, pp. 67-74, 2001.
[6] O. Kilic, A. Aktas and M. H. Dirikolu, “An investigation of the effects of shear on the deflection of an orthotropic cantilever beam by use of anisotropic elasticity theory,” Composites Science and Technology, Vol. 61, pp. 2055-2061, 2001
[7] D. J. Huang, H. J. Ding and W. Q. Chen, “Analytical solution for functionally graded anisotropic cantilever beam subjected to linearly distributed load,” Applied Mathematics and Mechanics, Vol. 28, pp. 855-860, 2007.
[8] R. P. Shimpi and Y. M. Ghugal, “A new layerwise trigonometric shear deformation theory for two-layered cross-ply beams,” Composites Science and Technology, Vol. 61, pp. 1271-1283, 2001.
[9] M. Karama, K. S. Afaq and S. Mistou, “Mechanical behavior of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity,” International Journal of Solid and Structures, Vol. 40, pp. 1525-1546, 2003.
[10] Y. M. Ghugal and R. P. Shimpi, “A review of refined shear deformation theories for isotropic and anisotropic laminated beams,” Journal of Reinforced Plastics and Composites, Vol. 20, No. 3, pp. 255-272, 2001.
[11] A. S. Sayyad, “Comparison of various shear deformation throries for the free vibration of thick isotropic beams,” International Journal of Civil and Structural Enfineering, Vol. 2, pp. 85-97, 2011.
[12] J. G. Williams, “End corrections for orthotropic DCB specimens,” Composites Science and Technology, Vol. 35, pp. 367-376, 1989.
[13] R. Olsson, “A simplified improved beam analysis of the DCB specimen,” Composites Science and Technology, Vol. 43, pp. 329-338, 1992.
[14] J. M. Whitney, “The effect of transverse shear deformation on the bending of laminated plates,” Journal of Composited Materials, Vol. 3, pp. 534-547, 1969.
[15] 王建智,含邊緣裂紋樑受混合模式彎矩之破壞力學分析,碩士論文,國立成功大學,2012。
[16] L. A. Carlsson, J. W. Gillespie and JR and R.B. Pipes, “On the analysis and design of the end notched flexure (ENF) specimen for mode II testing,” Journal of Composite Materials, Vol. 20, pp.594-604, 1986.
[17] J. Zhou and T. He, “On the analysis of the end-notched flexure specimen for measuring mode II fracture toughness of composite materials,” Composites Science and Technology,” Vol. 50, pp. 209-213, 1994.
[18] C. R. Corleto and H. A. Hongan, “Energy release rates for the ENF specimen using a beam on an elastic foundation,” Journal of Composite Materials, Vol. 29, pp. 1420-1436, 1995.
[19] J. R. Reeder and J. R. Crews JR., “Mixed-mode bending method for delamination testing,” AIAA Journal, Vol. 28, No. 7, pp.1270-1276, 1990.
[20] S. Bhashyam and B. D. Davidon, “Evaluation of date reduction methods for the mixed mode bending test,” AIAA Journal, Vol. 35, No. 3, pp. 547-552, 1997.
[21] Z. Liu, R. F. Gibson and G. M. Newaz, “Improved analytical models for mixed- mode bending tests of adhesively bonded joints,” The Journal of Adhesion, Vol. 78, pp. 245-268, 2002.
[22] ASTM D6671-06, “Standard test method for mixed mode I-mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites,” West Conshohocken, pp. 1-13, 2006.
[23] R. F. Gibson, Principles of Composite Material Mechanics, CRC Press, Boca Raton, FL, 2007.
[24] M. F. Kanninen, “An augmented double cantilever beam model for studying crack propagation and arrest,” International Journal of Fracture, Vol. 9, No. 1, pp. 83-92, 1973.
[25] S. G. Lekhnitskii, S. W. Tsai and T. Cheron, Anisotropic Plates, Gorden and Breach Science Publishers, NY, 1968.
[26] A. A. Griffith, “The phenomena of rupture and flow in solids,” Philosophical Transactions of the Royal Society of London, Vol. 221, pp. 163-198, 1921
[27] G. R. Irwin and J. A. Kies, “Critical energy rate analysis of fracture strength,” Welding Research Supplement, Vol. 33, pp. 193-198, 1954.
[28] T. C. T. Ting, “Explicit solution and invariance of the singularities at an interface crack in anisotropic composites,” International Jouranl of Solids Structures, Vol. 22, No. 9, pp. 965-983, 1986.
[29] C. Hwu, “Fracture parameters for the orthotropic bimaterial interface cracks,” Engineering Fracture Mechanics, Vol. 45, pp. 89-97, 1993.
[30] T. C. T. Ting, Anisotropic Elasticity; Theory and Applications, Oxford University Press, NY, 1996.
[31] D. M. Barnett and J. Lothe, “Synthesis of the sextic and the integral formalism for dislocations, Green’s function and surfaces waves in anisotropic elastic solids,” Phys. Norv, Vol. 7, pp. 13-19, 1973.
[32] C. Dongye and T. C. T. Ting, “Explicit expressions of Barnett-Lothe tensors, and their associated tensors for orthotropic materials,” Quarterly of Applied Mathematics, Vol. 47, pp. 723-734, 1989.
[33] C. Hwu, Anisotropic elastic plates, Springer, New York, 2010.
[34] T. C. Chiu and H. C. Lin, “On the homogenization of multilayered interconnect for interfacial fracture analysis,” IEEE Transactions on Components Packaging Technologies, Vol. 31, pp. 388-398, 2008.
[35] F. E. Penado, “A closed form solution for the energy release rate of the double cantilever beam specimen with an adhesive layer,” Journal of Composite Materials, Vol. 27, pp. 383-407, 1993.
[36] P. C. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” Journal of Basic Engineering, Transactions ASME, Vol. 85, pp. 528-534, 1963.
[37] J. M. Snodgrass, D. Pantelidis, M. L. Jenkins, J. C. Bravman and R. H. Dauskardt, “Subcritical debounding of Polymer/Silica interface under monotonic and cyclic loading,” Acta Materialia, Vol. 50, pp. 2395-2411, 2002.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-26起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw