進階搜尋


下載電子全文  
系統識別號 U0026-0708201210253200
論文名稱(中文) 三族氮化物多重量子井光伏元件之研製
論文名稱(英文) Design and Fabrication of III-Nitride Multiple Quantum Well Photovoltaic Devices
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 林冠宇
研究生(英文) Kuan-Yu Lin
學號 L76004129
學位類別 碩士
語文別 英文
論文頁數 86頁
口試委員 指導教授-賴韋志
口試委員-許進恭
口試委員-林佳鋒
口試委員-許世昌
口試委員-郭政煌
中文關鍵字 太陽能電池  氮化鎵  氫氣處理  圖案化藍寶石基板 
英文關鍵字 solar cell  gallium nitride  hydrogen treatment  patterned sapphire 
學科別分類
中文摘要 本論文針對提升氮化銦鎵(InGaN)系列多重量子井(multiple quantum well, MQW)光伏元件效率的研究與製作,探討其對太陽能電池操作表現的影響。藉由調整主動層內能障(barrier)與量子井(well)的厚度比、以及氫氣處理(hydrogen treatment)和圖形化藍寶石基板(patterned sapphire substrate, PSS)的使用,有效提升元件的轉換效率。
增加量子井厚度並減少能障厚度,可以提升元件的吸光效率,但較厚的氮化銦鎵結構會引發晶體缺陷。為了改善磊晶品質,本論文使用氫氣處理,許多文獻指出,成長主動層時通入的氫氣會和銦作用,使能障和量子井的接面更加平穩,有較佳的元件操作表現,其FF提升71%、轉換效率提升67%。加上圖案化藍寶石基板的使用,轉換效率可進一步提升77%。
主動層InGaN/GaN(厚度分別為4.5/3.8 nm,9對)的元件有最佳的操作表現,其VOC、JSC、Rsh、FF、及η分別為2.34 V、0.79%、0.79 mA/cm2、692 kΩ·cm2、 73.83%、及1.36%。
英文摘要 Various techniques for performance development of InGaN/GaN multiple quantum well (MQW) photovoltaic devices grown by metal organic vapor phase deposition have been investigated. High conversion efficiency is achieved by MQW design alteration, hydrogen (H2) treatment, and the use of patterned sapphire substrate (PSS).

Increasing well thickness, as well as decreasing barrier thickness, is found to boost up the quantum efficiency of a cell. However, indium compositional fluctuation in thick well layers provokes the degradation of the optical properties. The presence of H2 during barrier growth results in partial loss of indium, but smooth interface morphology of MQW structure, enhancing the fill factor (FF) by 71% and the power conversion efficiency (η) by 67%. Subsequently, the use of PSS contributes to a further improved overall performance of 77% by increasing light-absorption path in the device.

The device with H2-treated thickened absorption layer and grown on PSS presents an open-circuit voltage (VOC) of 2.34 V, a short-circuit current density (JSC) of 0.79% mA/cm2, and a shunt resistance (Rsh) of 692 kΩ·cm2, with a corresponding high FF of 73.83% and an η of 1.36%.
論文目次 Abstract i
摘要 ii
Acknowledgements iii
Contents v
List of Tables ix
List of Figures x

Chapter 1 Introduction
1.1 Background 1
1.2 Motivation 3
References in Chapter 1 6

Chapter 2 Photovoltaic Physics
2.1 Principles of Solar Energy Conversion 8
2.2 Typical Solar Cell Structures 8
2.2.1 p-n junction 9
2.2.2 p-i-n junction 10
2.3 Solar Cell Fundamentals 11
2.3.1 Ideal Solar Cell 11
2.3.2 Practical Solar Cells 12
2.4 Photovoltaic Characteristics of Solar Cells 13
2.4.1 Short-Circuit Current (JSC) 13
2.4.2 Open-Circuit Voltage (VOC) 14
2.4.3 Maximum Output Power (Pm), Voltage (Vm), Current (Im) 14
2.4.4 Fill Factor (FF) 15
2.4.5 Power Conversion Efficiency (PCE, η) 15
2.4.6 Parasitic Resistances 16
2.4.7 Quantum Efficiency (QE) 17
2.5 Instrumentation for Photovoltaic Efficiency Measurements 18
2.5.1 Solar Spectrum 18
2.5.2 Solar Stimulator and J-V Measurement System 19
References in Chapter 2 25

Chapter 3 Experiment
3.1 Experimental Apparatuses 27
3.1.1 Metal Organic Vapor Phase Epitaxy (MOVPE) 27
3.1.2 Sputter Deposition 27
3.1.3 Electron Beam Evaporator 28
3.1.4 Inductively Coupled Plasma Etching System (ICP) 28
3.1.5 Mask Aligner Exposure System 28
3.1.6 Furnace 29
3.1.7 X-Ray Diffractometer (XRD) 29
3.1.8 Photoluminescence (PL) and Electroluminescence (EL) 30
3.1.9 Spectral Response Measurement System 30
3.1.10 Scanning Electron Microscope (SEM) 31
3.1.11 Precision Semiconductor Parameter Analyzer 31
3.2 Fabrication of InGaN-based Multiple Quantum Well Solar Cells 32
3.2.1 Epitaxial Growth of GaN 32
3.2.2 Sample Cleaning 32
3.2.3 Device Processing Procedures 33
3.2.3-1 Mesa Etching 33
3.2.3-2 Transparent Conduction Layer Deposition 34
3.2.3-3 Annealing 35
3.2.3-4 Electrode Deposition 36
References in Chapter 3 43

Chapter 4 Results and Discussion
4.1 InGaN/GaN Multiple Quantum Well Heterostructures Grown by Metal
 Organic Vapor Phase Deposition 44
4.1.1 Stimulation of Energy Band 45
4.1.2 XRD Analysis 46
4.1.3 PL and EL Evaluation 46
4.1.4 Spectral Response and Relative EQE 48
4.1.5 Characterization of Photovoltaic Properties 48
4.2 Hydrogen Treatment of Indium Compositional Fluctuation in InGaN/GaN Multiple Quantum Wells 49
4.2.1 XRD Analysis 50
4.2.2 PL and EL Evaluation 51
4.2.3 Spectral Response and Relative EQE 52
4.2.4 Characterization of Photovoltaic Properties 52
4.3 InGaN/GaN Multiple Quantum Well Photovoltaic Devices Grown on 
 Patterned Sapphire Substrates 53
4.3.1 Spectral Response and Relative EQE 55
4.3.2 Characterization of Photovoltaic Properties 55
References in Chapter 4 81

Chapter 5 Conclusions and Future Work
5.1 Conclusions 84
5.2 Future Work 85
參考文獻 [1] Adams W. G., & Day, R. E. (1876). The action of light on selenium. Phil. Trans. R. Soc., vol. A, 25, 116-117.
[2] Chapin, D. M., Fueller, C. S., & Pearson G. L. (1954). A new silicon p-n junction photocell for converting solar radiation into electrical power. J. Appl. Phys., 25, 676-677.
[3] Fraas, Lewis M. (2005). Path to affordable solar electric power & the 35% efficient solar cell. Issaquah, WA: JX Crystals Inc.
[4] Goetzberger, A., & Hoffmann, V. U. (2005). Photovoltaic solar energy generation. Berlin Heidelberg: Springer-Verlag.
[5] Jiang, M. T. (2011). Effect of series resistance on InGaN/sapphire-based solar cells. Tainan, Taiwan: MS Dissertation, National Cheng Kung University.
[6] Wilson, G. (2012). Best research-cell efficiencies. Golden, CO: National Renewable Energy Laboratory.
[7] Lueque, A. (1989). Solar cells and optics for photovoltaic concentration. Bristol and Philadelphia: Adam Hilger.
[8] Luque, A., & Andreev, V. (Eds.). (2007). Concentrator photovoltaics. Berlin Heidelberg: Springer-Verlag.
[9] Markvart, T. (Ed.). (1994). Solar electricity. Chichester: John Wiley & Sons.
[10] Moller, H. J. (1993). Semiconductors for solar cells. Norwood, MA: Artech House.
[11] Wu, J., Walukiewicz, W., Shan, W., Yu, K. M., Ager III, J. W., Haller, E. E., Lu, H., & Schaff W. J. (2002). Effects of the narrow bandgap on the properties of InN. Phys. Rev. B, 66, 201403.
[12] Wu, J., Walukiewicz, W., Shan, W., Yu, K. M., Ager III, J. W., Haller, E. E., Lu, H., & Schaff W. J. (2003). Superior radiation resistance of In1-xGaxN alloys: a full-solar- spectrum photovoltaic material system. J. Appl. Phys., vol. 94, 10, 6477-6482.
[13] Yang, C. C. (2007). Fabrications and characteristics of group III/V solar cells. Tainan, Taiwan: MS Dissertation, National Cheng Kung University.
[14] Yang, C. C. (2011). Design, fabrication and characterization for InXGa1-XN-based photovoltaics. Tainan, Taiwan: PhD Dissertation, National Cheng Kung University.
[15] 黃惠良,蕭錫鍊,周明奇,林堅楊,江雨龍,曾百亨,李威儀,李世昌,林唯芳. (2008). 太陽電池. 台北市: 五南圖書出版股份有限公司.
[16] American Society for Testing and Materials. (1999). Terrestrial reference spectra for photovoltaic performance evaluation, reference AM1.5 spectra.
[17] American Society for Testing and Materials. (1997). ASTM E927.
[18] Goetzberger, A., & Hoffmann, V. U. (2005). Photovoltaic solar energy generation. Berlin Heidelberg: Springer-Verlag.
[19] Grundmann, M. (2006). The physics of semiconductors. Berlin Heidelberg: Springer-Verlag.
[20] Huang, M. S. (2010). Improved conversion efficiency of InGaN/sapphire-based solar cells. Tainan, Taiwan: MS Dissertation, National Cheng Kung University.
[21] International Electrotechnical Commission. (2004). IEC 60904-9.
[22] Jiang, M. T. (2011). Effect of series resistance on InGaN/sapphire-based solar cells. Tainan, Taiwan: MS Dissertation, National Cheng Kung University.
[23] Kuo, H. W. (2011). Investigation of Mn-doped GaN based schottky photodetectors and solar cells. Tainan, Taiwan: MS Dissertation, National Cheng Kung University.
[24] Luque A., & Hegedus, S. (Eds.). (2003). Handbook of photovoltaic science and engineering. West Sussex: John Wiley & Sons Ltd.
[25] Markvart, T., & Castaner, L. (Eds.). (2005). Solar cells: materials, manufacture and operation. Kidlington Oxford: Elsevier Ltd.
[26] Nakamura, S., & Fasol, G. (1997). The blue laser diode. Berlin Heidelberg: Springer-Verlag.
[27] Nelson, J. (2003). The physics of solar cells. London: Imperial College Press.
[28] Schroder, D. K. (1998). Semiconductor material and device characterization (2nd ed.). New York: John Wiley & Sons, Inc.
[29] Sze, S. M., & Ng, K. K. (2007). Physics of semiconductor devices. Hoboken, NJ: John Wiley & Sons.
[30] Bai, J., Wang, T., & Sakai, S. (2001). Study of the strain relaxation in InGaN/GaN multiple quantum well structures. J. Appl. Phys., vol. 90, 4, 1740-1744.
[31] Cho, H. K., Lee, J. Y., Kim, K. S., Yang, G. M., Song, J. H., & Yu, P. W. (2001). Effect of buffer layers and stacking faults on the reduction of threading dislocation density in GaN overlayers grown by metalorganic chemical vapor deposition. J. Appl. Phys. Vol. 89, 5, 2617-2621.
[32] Chu, M. T., Liao, W. Y., Horng, R. H., Tsai, T. Y., Wu, T. B., L, S. P., Wu, M. H., & Lin, R. M. (2011). Growth and characterization of p-InGaN/i-InGaN/n-GaN double-heterojunction solar cells on patterned sapphire substrates. IEEE Elec. Dev. Lett., vol. 32, 7, 922-924.
[33] Feng, Z. H., Qi, Y., Lu, Z. D., Zhou, Y. G., & Lau, K. M. (2004). GaN-based blue-light emitting diodes grown and fabricated on patterned sapphire substrates using metalorganic vapor phase epitaxy. J. Cryst. Growth, vol. 272, 327-332.
[34] Esmaeili, M., Sabooni, M., Haratizadeh, H., Paskov, P. P., Monemar, B., Holz, P. O., Kamiyama, S., & Iwaya, M. (2007). Optical properties of GaN/AlGaN QW nanostructures with different well and barrier widths. J. Phys. Condens. Matter, vol. 19, 35, 356218.
[35] Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S., & Ikedaa, M. (2000). Characterization of threading dislocations in GaN epitaxial layers. Appl. Phys. Lett., vol. 76, 23, 3421-3423.
[36] Hu, Y. L., Farrell, R. M., Neufeld, C. J., Iza, M., Cruz, S. C., Pfaff, N., Simeonov, D., Keller, S., Nakamura, S., DenBaars, S. P., Mishra, U. K., & Speck, J. S. (2012). Effect of quantum well cap layer thickness on the microstructure and performance of InGaN/GaN solar cells. Appl. Phys. Lett., vol. 100, 16,161101.
[37] Kim, I. H., Park, H. S., Park, Y. J., & Kim, T. (1998). Formation of V-shaped pits in InGaN/GaN multiquantum wells and bulk InGaN films. Appl. Phys. Lett., vol. 73, 12, 1634-1636.
[38] Lai, K. Y., Lin, G. J., Chen, C. Y., Lai, Y. L., & He, J. H. (2011). Origin of hot carriers in InGaN-based quantum-well solar cells. IEEE Elec. Dev. Lett., vol. 32, 2, 179-181.
[39] Lai, K. Y., Lin, G. J., Lai, Y. L., Chen, Y. F., & He, J. H. (2010). Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells. Appl. Phys. Lett., vol. 96, 8, 081103.
[40] Lai, W. C., Yang, Y. Y., Chen, Y. H., & Sheu, J. K. (2011). GaN-based light-emitting diodes with air gap array and patterned sapphire substrate. IEEE Phot. Tech. Lett., vol. 23, 17, 1207-1209.
[41] Lee, Y. J., Lee, M. H., Cheng, C. M., & Yang, C. H. (2011). Enhanced conversion efficiency of InGaN multiple quantum well solar cells grown on a patterned sapphire substrate. Appl. Phys. Lett., vol. 98, 26, 263504.
[42] Moon, Y. T., Kim D. J., Song, K. M., Choi, C. J., Han, S. H., Seong, T. Y., & Park, S. J. (2001). Effects of thermal and hydrogen treatment on indium segregation in InGaN/GaN multiple quantum wells. J. Appl. Phys., vol. 89, 11, 6514-6518.
[43] Ponce, F. A., Cherns, D., Goetz, W., & Kern, R. S. (1998). Microstructure of InGaN quantum wells. Mater. Res. Soc. Symp. Proc., 482, 453-458.
[44] Scholz F., Off, J., Fehrenbacher, E., Gfrorer, O., & Brockt, G. (2000). Investigations on structural properties of GaInN-GaN multi quantum well structures. Phys. Stat. Sol., vol. 180, 1, 315-320.
[45] Suihkonen, S., Lang, T., Svensk, O., Sormunen, J., Torma, P. T., Sopanen, M., Lipsanen, H., Odnoblyudov, M. A., & Bougrov, V. E. (2007). Control of the morphology of InGaN/GaN quantum wells grown by metalorganic chemical vapor deposition. J. Cryst. Growth, vol. 300, 324-329.
[46] Suihkonen, S., Svensk, O., Lang, T., Lipsanen, H., Odnoblyudov, M. A., & Bougrov, V. E. (2006). The effect of InGaN/GaN MQW hydrogen treatment and threading dislocation optimization on GaN LED efficiency. J. Cryst. Growth, vol. 298, 740-743.
[47] Ting, S. M., Ramer, J. C., Florescu, D. I., Merai, V. N., Albert, B. E., Parekh, A., Lee, D. S., Lu, D., Christini, D. V., Liu, L., & Armour, E. A. (2003). Morphological evolution of InGaN/GaN quantum-well heterostructures grown by metalorganic chemical vapor deposition. J. Appl. Phys., vol. 94, 3, 1461-1467.
[48] Tsai, C. L., Fan, G. C., & Lee, Y. S. (2011). Effects of InGaN/GaN superlattice absorption layers on the structural and optical properties of InGaN solar cells. J. Vac. Sci. Technol. B, vol. 29, 2, 021201.
[49] Wierer, J. J., Fischer A. J., & Koleske, D. D. (2010). The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices. Appl. Phys. Lett., vol. 96, 5, 051107.
[50] Wierer, J. J., Koleske, D. D., & Lee, S. R. (2012). Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells. Appl. Phys. Lett., vol. 100, 11, 111119.
[51] Wu, X. H., Elsass, C. R., Abare, A., Mack, M., Keller, S., Petroff, P. M., DenBaars, S. P., & Speck, J. S. (1998). Structural origin of V-defects and correlation with localized excitonic centers in InGaN/GaN multiple quantum wells. Appl. Phys. Lett., vol. 72, 6, 692-694.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-09-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw