進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0707202014103800
論文名稱(中文) 電磁輻射用以奈米生醫的應用:影像、傷口癒合與腫瘤治療
論文名稱(英文) Electromagnetic radiation stimulated nanoplatform in biomedical applications: imaging, wound healing, and cancer therapy
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 108
學期 2
出版年 109
研究生(中文) 王柳鈞
研究生(英文) Liu-Chun Wang
電子信箱 ch11121215@hotmail.com.tw
學號 L38051027
學位類別 博士
語文別 英文
論文頁數 105頁
口試委員 指導教授-葉晨聖
口試委員-黃志嘉
口試委員-吳炳慶
口試委員-許火順
口試委員-蘇家豪
口試委員-萬德輝
口試委員-簡儀欣
中文關鍵字 ZnGa2O4:Cr  長時間放光特性  X-ray  傷口癒合  活性氧物質  二氧化碳治療  聚吡咯  波爾效應  癌症治療  芬頓反應  溫感型高分子  普魯士藍類似物 
英文關鍵字 ZnGa2O4:Cr  long-lasting luminescence  X-ray  wound healing  ROS  Carbon Dioxide Therapy  Polypyrrole Nanoparticles  Bohr effect  cancer therapy  Fenton reaction  lower critical solution temperature polymer  Prussian blue analogs 
學科別分類
中文摘要 有越來越多的奈米材料被開發應用在奈米生醫的領域,本研究設計三種不同特性的泰米材料以X光或以近紅外光激發進行生物醫學影像、治療與修復的應用。藉由合成凹面立方體的長時間放光材料進行X光的放光顯影技術,可以進行深層肝臟腫瘤之顯影偵測。有別於以往X光顯影利用對X光吸收度的差異進行對比顯影,此技術開發新的X光顯影技術,利用材料在接收X光照後在近紅外光區的長時間放光特性,針對此放光進行收補偵測,此技術大幅降低背景雜訊的干擾提升靈敏度。結果顯示僅需要0.5 Gy的劑量即可偵測0.3 cm的腫瘤,2小時內接偵測得到訊號,並且具有重複技激發的特性。將利用二氧化碳進行新型傷口癒合的技術結合生物相容性的高分子達到加速傷口癒合的效果。此高分子奈米材料具備將近紅外光轉換成熱的能力,表面修飾的小蘇打分子在熱的環境下分解產生二氧化碳。藉由舒張血管增加血流量,使更多的養分流入傷口區,以及二氧化碳誘發波爾效應提高含氧量,進一步促使血管增生加速傷口癒合。以及利用普魯士藍的類似物,進行酸化處理使材料表面暴露出來並進行離子交換,使普魯士藍類似物同時具備光熱治療效果與產生活性氧的能力。藉由溫感型高分子進行表面修飾保護,材料照射雷射光之後誘發溫度上升使高分子從捲曲的疏水態轉變為親水態進一步與環境中的雙氧化水進行Fenton Reaction,目前的結果顯示修飾高分子之後產生的活性氧會大幅下降,並在50度的水域環境中產生,代表高分子的包覆與轉變可以進行治療與保護的應用。
英文摘要 In this research, we developed three different kinds of nanoparticles that can be responsive by electromagnetic radiation triggered for biomedical application, including the long-lasting luminescence nanoparticles for X-ray induced imaging, biocompatible polymer for accelerate wound healing, and coordination polymers nanoparticles for radical therapy combine with photothermal therapy under 808 nm laser irradiation.
In chapter 2, we fabricated chromium-doped zinc gallate, ZnGa2O4:Cr3+ (ZGC), material is viewed as a long-lasting luminescent phosphor which can avoid tissue autofluorescence interference for in vivo imaging detection. Herein, we describe the process by which we obtained dispersed and well-defined concave cubic ZGC, finding much stronger long-lasting luminescence in UV and X-ray excitation for the dispersed cubic ZGC compared with the agglomerative form that cannot be excited using X-rays with a low dose of 0.5 Gy. The cubic ZGC revealed a specific accumulation in liver and 0.5 Gy used at the end of X-ray excitation was sufficient for imaging of deep-seated hepatic tumors.
In chapter 3, we synthesized the uniform and biocompatible polypyrrole nanoparticles (NPs) with modification of bicarbonate on the PPY NPs to generate heat upon 808 nm laser irradiation. Bicarbonate can be decomposed into CO2 at 42°C, thus the particles were designed to reveal 808 nm laser induced CO2 generation for the purpose of the facilitation of wound healing. The topical drop of the colloidal solution was applied on the incisional wound, followed by exposure of 808 nm laser light to yield CO2, resulting in the observation of the accelerated wound healing.
In chapter 4, we have discovered a proton-induced metal replacement reaction to bring up strong NIR absorption ex nihilo following the acidic corrosion of CFPB analogs. Regardless of the structure of the final etching product, the acid corrosion concomitant of metal replacement process has endowed the formation of Fe3+-N≡C-Fe2+ generating the characteristic of NIR band. The CFPB nanocages derived from CFPB nanocubes found the promising biomedical applications in photothermal and radical treatments. Further modification of UCST polymer on CFPB nanocages enable the property to trigger by single laser irradiate.
論文目次 摘要 I
Abstract II
致謝 IV
Content VI
Abbreviation Table XIII
Chapter 1 Introduction 1
1.1 Applicated of X-Ray nanoparticles 1
1.2 Near Infrared (NIR) 6
1.3 Bioimaging 10
1.4 Wound healing 12
1.5 Cancer Therapy 17
1.5.1 Thermal Therapy for Cancer Therapy 17
1.5.2 Photodynamic therapy for Cancer Therapy 20
Chapter 2 Low dose of X-ray excited long-lasting luminescent concave nanocubes in highly passive targeting deep-seated hepatic tumors. 22
2.1 Introduction 22
2.1.1 Long-Lasting luminescence (LLL) 22
2.1.2 The Mechanism of Long-Lasting Luminescence. 23
2.1.3 External Excitation Source 24
2.1.4 ZGC 25
2.2 Motivation 25
2.3 Materials 27
2.4 Experiments section 27
2.4.1 Preparation of precursors Zn(OH)2 and Ga(OH)3 27
2.4.2 Preparation of ZGC concave nanocubes 27
2.4.3 Preparation of APTES modified ZGC concave nanocubes. 28
2.4.4 Preparation of PEGylated ZGC concave nanocubes 28
2.4.5 In vitro Mercury lamp excited persistent luminescent property 28
2.4.6 Synchrotron radiation X-ray excited radioluminescence 28
2.4.7 In vitro X-ray induced persistent luminescence property. 29
2.4.8 Cell viabilities of X-ray irradiation with cell counting kit‐8 assay . 29
2.4.9 Cell imaging of PEGylated ZGC concave nanocubes. 30
2.4.10 Safety impact of X-ray irradiation to animal. 30
2.4.11 Flow cytometry analysis. 30
2.4.12 X-ray excited radioluminescence of PEGylated ZGC nanocubes. 31
2.4.13 The hepatocellular carcinoma animal model for in vivo imaging. 31
2.4.14 X-ray excited radioluminescence of PEGylated ZGC nanocubes in hepatocellular carcinoma animal model 31
2.5 Results and Discussion 32
2.5.1 Characterization of ZGC concave nanocubes. 32
2.5.2 Luminescence property of ZGC concave nanocubes. 35
2.5.3 Surface modification of ZGC concave nanocubes. 36
2.5.4 Persistent luminescence of ZGC upon mercury lamp irradiation. 38
2.5.5 Persistent luminescence of ZGC upon X-ray irradiation. 41
2.5.6 Biosafety of in vitro and in vivo studies with different X-ray dosage. 43
2.5.7 In vitro persistent luminescence of ZGC upon X-ray irradiation. 46
2.5.8 In vivo persistent luminescence of ZGC upon X-ray irradiation. 48
2.6 Conclusion 52
Chapter 3 CO2 generation to potentially facilitate incisional wound healing following irradiation of NIR laser on the polypyrrole nanoparticles. 53
3.1 Introduction 53
3.1.1 Carbon Dioxide Therapy for Wound Healing 53
3.1.2 Polypyrrole Nanoparticles 55
3.2 Motivation 57
3.3 Materials 58
3.4 Experiments Section 58
3.4.1 Preparation of PPY NPs 58
3.4.2 Preparation of PPY/BC NPs 58
3.4.3 Calculation of Photothermal Conversion Efficiency for PPY NPs. 58
3.4.4 Quantitation of CO2 Generated from PPY/BC NPs 59
3.4.5 Release of CO2 of PPY/BC NPs upon 808 laser Irradiation 60
3.4.6 Temperature Elevation Curves of PPY/BC NPs Receiving 808 nm laser Irradiation. 60
3.4.7 Cell Culture 60
3.4.8 Animals and Wound Model 60
3.5 Results and Discussion 61
3.5.1 Characterization of PPY and PPY/BC NPs. 61
3.5.2 Photothermal effect on 808 nm laser irradiation. 62
3.5.3 CO2 liberation upon Heating and 808 nm Laser Irradiation. 64
3.5.4 In vitro evaluation of PPY NPs 66
3.5.5 In vivo CO2 delivery on Incisional Wound. 67
3.6 Conclusion 70
Chapter 4 Photothermal control the ROS release by using Prussian blue analogue structure nanoparticles. 71
4.1 Introduction 71
4.1.1 Fenton Reaction 71
4.1.2 Coordination polymers (CPs) 72
4.1.3 Prussian blue (PB) and Prussian blue analogs (PBAs) 73
4.1.4 Substitution process 74
4.1.5 Thermal responsive polymer 75
4.2 Motivation 76
4.3 Materials 77
4.4 Experiments Section 78
4.4.1 Synthesis of cobalt-iron Prussian blue (CFPB) nanocubes 78
4.4.2 Synthesis of nanoframes 78
4.4.3 Synthesis of Prussian blue (PB) nanocubes 78
4.4.4 Fabrication of N-acryloyl glycinamide (NAGA) monomer. 79
4.4.5 Fabrication of NAGA-co-BA polymer. 79
4.4.6 The evaluation of reactive oxygen species (ROS) generation by fluorescence method. 79
4.4.7 Heating performance of nanoframes upon laser Irradiation 80
4.4.8 Cell culture 80
4.4.9 Cytotoxicity studies by MTT assay 80
4.5 Results and Discussion 82
4.5.1 Characterization of cobalt-iron Prussian blue (CFPB) nanocubes 82
4.5.2 Characterization of CFPB nanocages. 84
4.5.3 Characterization of NAGA 87
4.5.4 Characterization of NAGA-co-BA polymer. 88
4.5.6 ROS generate with CFPB nanocages and H2O2. 90
4.5.7 In vitro evaluation of CFPB nanoparticles. 91
4.5.8 Characterization of UCST polymer grafted CFPB nanocages. 92
4.6 Conclusion 95
Chapter 5 Conclusion 96
Reference 97
參考文獻 1. Röntgen, W. C., On a new kind of rays. Science 1896, 3 (59), 227-231.
2. Kobayashi, K.; Usami, N.; Porcel, E.; Lacombe, S.; Le Sech, C., Enhancement of radiation effect by heavy elements. Mutation Research/Reviews in Mutation Research 2010, 704 (1-3), 123-131.
3. Blasse, G., Scintillator materials. Chemistry of Materials 1994, 6 (9), 1465-1475.
4. Nikl, M., Scintillation detectors for x-rays. Measurement Science and Technology 2006, 17 (4), R37.
5. Sun, W.; Zhou, Z.; Pratx, G.; Chen, X.; Chen, H., Nanoscintillator-mediated x-ray induced photodynamic therapy for deep-seated tumors: from concept to biomedical applications. Theranostics 2020, 10 (3), 1296.
6. Zhang, C.; Zhao, K.; Bu, W.; Ni, D.; Liu, Y.; Feng, J.; Shi, J., Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence. Angewandte Chemie International Edition 2015, 54 (6), 1770-1774.
7. Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F., Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horizons 2016, 1 (3), 168-184.
8. Wang, R.; Li, X.; Zhou, L.; Zhang, F., Epitaxial Seeded Growth of Rare‐Earth Nanocrystals with Efficient 800 nm Near‐Infrared to 1525 nm Short‐Wavelength Infrared Downconversion Photoluminescence for In Vivo Bioimaging. Angewandte Chemie International Edition 2014, 53 (45), 12086-12090.
9. Jia, Q.; Ge, J.; Liu, W.; Liu, S.; Niu, G.; Guo, L.; Zhang, H.; Wang, P., Gold nanorod@ silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy. Nanoscale 2016, 8 (26), 13067-13077.
10. Hu, J.; Ortgies, D. H.; Aguliar Torres, R.; Fernández, N.; Porto, L.; Martin Rodriguez, E.; García Solé, J.; Jaque, D.; Alfonso, F.; Rivero, F., Quantum dots emitting in the third biological window as bimodal contrast agents for cardiovascular imaging. Advanced Functional Materials 2017, 27 (41), 1703276.
11. Hendee, W. R.; Morgan, C. J., Magnetic resonance imaging part I—physical principles. Western Journal of Medicine 1984, 141 (4), 491.
12. Ter-Pogossian, M. M. In Basic principles of computed axial tomography, Seminars in nuclear medicine, Elsevier: 1977; pp 109-127.
13. Cheheltani, R.; Ezzibdeh, R. M.; Chhour, P.; Pulaparthi, K.; Kim, J.; Jurcova, M.; Hsu, J. C.; Blundell, C.; Litt, H. I.; Ferrari, V. A., Tunable, biodegradable gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Biomaterials 2016, 102, 87-97.
14. Yi, H.; Ghosh, D.; Ham, M.-H.; Qi, J.; Barone, P. W.; Strano, M. S.; Belcher, A. M., M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano letters 2012, 12 (3), 1176-1183.
15. Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J.; Dorenbos, P.; Bessodes, M.; Gourier, D., The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nature materials 2014, 13 (4), 418-426.
16. Li, Z.; Zhang, Y.; Wu, X.; Huang, L.; Li, D.; Fan, W.; Han, G., Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. Journal of the American Chemical Society 2015, 137 (16), 5304-5307.
17. Braiman-Wiksman, L.; Solomonik, I.; Spira, R.; Tennenbaum, T., Novel insights into wound healing sequence of events. Toxicologic pathology 2007, 35 (6), 767-779.
18. Wynn, T. A.; Barron, L. In Macrophages: master regulators of inflammation and fibrosis, Seminars in liver disease, © Thieme Medical Publishers: 2010; pp 245-257.
19. Haukipuro, K.; Melkko, J.; Risteli, L.; Kairaluoma, M.; Risteli, J., Synthesis of type I collagen in healing wounds in humans. Annals of surgery 1991, 213 (1), 75.
20. Han, G.; Ceilley, R., Chronic wound healing: a review of current management and treatments. Advances in therapy 2017, 34 (3), 599-610.
21. Vijayakumar, V.; Samal, S. K.; Mohanty, S.; Nayak, S. K., Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management. International journal of biological macromolecules 2019, 122, 137-148.
22. Leu, J.-G.; Chen, S.-A.; Chen, H.-M.; Wu, W.-M.; Hung, C.-F.; Yao, Y.-D.; Tu, C.-S.; Liang, Y.-J., The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine: Nanotechnology, Biology and Medicine 2012, 8 (5), 767-775.
23. Miller, K. D.; Siegel, R. L.; Lin, C. C.; Mariotto, A. B.; Kramer, J. L.; Rowland, J. H.; Stein, K. D.; Alteri, R.; Jemal, A., Cancer treatment and survivorship statistics, 2016. CA: a cancer journal for clinicians 2016, 66 (4), 271-289.
24. Hobohm, H.-U., Healing Heat-an essay on cancer fever therapy: Immunological basics and practical application with 16 case reports. BoD–Books on Demand: 2016.
25. Chen, S. S.; Humphrey, J., Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37 C. Journal of biomechanics 1997, 31 (3), 211-216.
26. Jaque, D.; Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.; Rodriguez, E. M.; Sole, J. G., Nanoparticles for photothermal therapies. nanoscale 2014, 6 (16), 9494-9530.
27. Ji, M.; Xu, M.; Zhang, W.; Yang, Z.; Huang, L.; Liu, J.; Zhang, Y.; Gu, L.; Yu, Y.; Hao, W., Structurally well‐defined Au@ Cu2− xS core–shell nanocrystals for improved cancer treatment based on enhanced photothermal efficiency. Advanced Materials 2016, 28 (16), 3094-3101.
28. Wu, Z. C.; Li, W. P.; Luo, C. H.; Su, C. H.; Yeh, C. S., Rattle‐Type Fe3O4@ CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows. Advanced Functional Materials 2015, 25 (41), 6527-6537.
29. Dougherty, T. J.; Grindey, G.; Fiel, R.; Weishaupt, K. R.; Boyle, D., Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. Journal of the National Cancer Institute 1975, 55 (1), 115-121.
30. Lucky, S. S.; Soo, K. C.; Zhang, Y., Nanoparticles in photodynamic therapy. Chemical reviews 2015, 115 (4), 1990-2042.
31. Hölsä, J., Persistent luminescence beats the afterglow: 400 years of persistent luminescence. Electrochem. Soc. Interface 2009, 18 (4), 42-45.
32. Shionoya, S.; Yen, W. M.; Yamamoto, H., Phosphor handbook. CRC press: 2018.
33. Matsuzawa, T.; Aoki, Y.; Takeuchi, N.; Murayama, Y., A New Long Phosphorescent Phosphor with High Brightness, SrAl2 O 4: Eu2+, Dy3+. Journal of the Electrochemical Society 1996, 143 (8), 2670.
34. Yamamoto, H.; Matsuzawa, T., Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+. Journal of luminescence 1997, 72, 287-289.
35. Wang, X.; Zhang, Z.; Tang, Z.; Lin, Y., Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor. Materials chemistry and physics 2003, 80 (1), 1-5.
36. Pan, Z.; Lu, Y.-Y.; Liu, F., Sunlight-activated long-persistent luminescence in the near-infrared from Cr 3+-doped zinc gallogermanates. Nature materials 2012, 11 (1), 58-63.
37. Aitasalo, T.; Hölsä, J.; Jungner, H.; Lastusaari, M.; Niittykoski, J., Thermoluminescence study of persistent luminescence materials: Eu2+-and R3+-doped calcium aluminates, CaAl2O4: Eu2+, R3+. The Journal of Physical Chemistry B 2006, 110 (10), 4589-4598.
38. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A.; Gambhir, S.; Weiss, S., Quantum dots for live cells, in vivo imaging, and diagnostics. science 2005, 307 (5709), 538-544.
39. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H., Quantum dot bioconjugates for imaging, labelling and sensing. Nature materials 2005, 4 (6), 435-446.
40. Li, B.; Lu, L.; Zhao, M.; Lei, Z.; Zhang, F., An Efficient 1064 nm NIR‐II Excitation Fluorescent Molecular Dye for Deep‐Tissue High‐Resolution Dynamic Bioimaging. Angewandte Chemie International Edition 2018, 57 (25), 7483-7487.
41. Li, D.; Wang, S.; Lei, Z.; Sun, C.; El-Toni, A. M.; Alhoshan, M. S.; Fan, Y.; Zhang, F., Peroxynitrite activatable NIR-II fluorescent molecular probe for drug-induced hepatotoxicity monitoring. Analytical chemistry 2019, 91 (7), 4771-4779.
42. Yang, M.; Yang, T.; Mao, C., Optimierung photodynamischer Krebstherapien auf der Grundlage physikalisch‐chemischer Faktoren. Angewandte Chemie 2019, 131 (40), 14204-14219.
43. Chen, H.; Sun, X.; Wang, G. D.; Nagata, K.; Hao, Z.; Wang, A.; Li, Z.; Xie, J.; Shen, B., LiGa 5 O 8: Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors. Materials horizons 2017, 4 (6), 1092-1101.
44. Song, L.; Li, P. P.; Yang, W.; Lin, X. H.; Liang, H.; Chen, X. F.; Liu, G.; Li, J.; Yang, H. H., Low‐dose X‐ray activation of W (VI)‐doped persistent luminescence nanoparticles for deep‐tissue photodynamic therapy. Advanced Functional Materials 2018, 28 (18), 1707496.
45. Maldiney, T.; Lecointre, A.; Viana, B.; Bessiere, A.; Bessodes, M.; Gourier, D.; Richard, C.; Scherman, D., Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging. Journal of the American Chemical Society 2011, 133 (30), 11810-11815.
46. Bessière, A.; Jacquart, S.; Priolkar, K.; Lecointre, A.; Viana, B.; Gourier, D., ZnGa 2 O 4: Cr 3+: a new red long-lasting phosphor with high brightness. Optics express 2011, 19 (11), 10131-10137.
47. Zhang, W.; Zhang, J.; Chen, Z.; Wang, T.; Zheng, S., Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors. Journal of luminescence 2010, 130 (10), 1738-1743.
48. Bessière, A. l.; Sharma, S. K.; Basavaraju, N.; Priolkar, K. R.; Binet, L.; Viana, B.; Bos, A. J.; Maldiney, T.; Richard, C.; Scherman, D., Storage of visible light for long-lasting phosphorescence in chromium-doped zinc gallate. Chemistry of Materials 2014, 26 (3), 1365-1373.
49. Brandi, C.; Grimaldi, L.; Nisi, G.; Brafa, A.; Campa, A.; Calabro, M.; Campana, M.; D'ANIELLO, C., The role of carbon dioxide therapy in the treatment of chronic wounds. in vivo 2010, 24 (2), 223-226.
50. Hartmann, B. R.; Bassenge, E.; Pittler, M.; Hartmann, B. R., Effect of carbon dioxide-enriched water and fresh water on the cutaneous microcirculation and oxygen tension in the skin of the foot. Angiology 1997, 48 (4), 337-343.
51. Li, W.-P.; Su, C.-H.; Wang, S.-J.; Tsai, F.-J.; Chang, C.-T.; Liao, M.-C.; Yu, C.-C.; Vi Tran, T.-T.; Lee, C.-N.; Chiu, W.-T., CO2 delivery to accelerate incisional wound healing following single irradiation of near-infrared lamp on the coordinated colloids. ACS nano 2017, 11 (6), 5826-5835.
52. Zha, Z.; Yue, X.; Ren, Q.; Dai, Z., Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Advanced materials 2013, 25 (5), 777-782.
53. George, P. M.; Lyckman, A. W.; LaVan, D. A.; Hegde, A.; Leung, Y.; Avasare, R.; Testa, C.; Alexander, P. M.; Langer, R.; Sur, M., Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials 2005, 26 (17), 3511-3519.
54. Zha, Z.; Deng, Z.; Li, Y.; Li, C.; Wang, J.; Wang, S.; Qu, E.; Dai, Z., Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 2013, 5 (10), 4462-4467.
55. Jin, Y.; Li, Y.; Ma, X.; Zha, Z.; Shi, L.; Tian, J.; Dai, Z., Encapsulating tantalum oxide into polypyrrole nanoparticles for X-ray CT/photoacoustic bimodal imaging-guided photothermal ablation of cancer. Biomaterials 2014, 35 (22), 5795-5804.
56. Liang, X.; Li, Y.; Li, X.; Jing, L.; Deng, Z.; Yue, X.; Li, C.; Dai, Z., PEGylated polypyrrole nanoparticles conjugating gadolinium chelates for dual‐modal MRI/photoacoustic imaging guided photothermal therapy of cancer. Advanced Functional Materials 2015, 25 (9), 1451-1462.
57. Su, C.-H.; Li, W.-P.; Tsao, L.-C.; Wang, L.-C.; Hsu, Y.-P.; Wang, W.-J.; Liao, M.-C.; Lee, C.-L.; Yeh, C.-S., Enhancing Microcirculation on Multitriggering Manner Facilitates Angiogenesis and Collagen Deposition on Wound Healing by Photoreleased NO from Hemin-Derivatized Colloids. ACS nano 2019, 13 (4), 4290-4301.
58. Fenton, H., LXXIII.—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions 1894, 65, 899-910.
59. Schultz, M. M.; Furlong, E. T.; Kolpin, D. W.; Werner, S. L.; Schoenfuss, H. L.; Barber, L. B.; Blazer, V. S.; Norris, D. O.; Vajda, A. M., Antidepressant pharmaceuticals in two US effluent-impacted streams: occurrence and fate in water and sediment, and selective uptake in fish neural tissue. Environmental science & technology 2010, 44 (6), 1918-1925.
60. Clarizia, L.; Russo, D.; Di Somma, I.; Marotta, R.; Andreozzi, R., Homogeneous photo-Fenton processes at near neutral pH: a review. Applied Catalysis B: Environmental 2017, 209, 358-371.
61. Giannakis, S.; López, M. I. P.; Spuhler, D.; Pérez, J. A. S.; Ibáñez, P. F.; Pulgarin, C., Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 1: A review of the mechanisms and the fundamental aspects of the process. Applied Catalysis B: Environmental 2016, 199, 199-223.
62. Giannakis, S., A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: Surface functionalization, biomass treatment, combatting cancer and other medical uses. Applied Catalysis B: Environmental 2019, 248, 309-319.
63. Valko, M.; Rhodes, C.; Moncol, J.; Izakovic, M.; Mazur, M., Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological interactions 2006, 160 (1), 1-40.
64. Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R. B.; Koul, H. K., Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer research 2008, 68 (6), 1777-1785.
65. Li, W.-P.; Su, C.-H.; Chang, Y.-C.; Lin, Y.-J.; Yeh, C.-S., Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS nano 2016, 10 (2), 2017-2027.
66. Zakaria, M. B.; Chikyow, T., Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments. Coordination Chemistry Reviews 2017, 352, 328-345.
67. Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H., Sodium‐Ion Battery Materials and Electrochemical Properties Reviewed. Advanced Energy Materials 2018, 8 (16), 1800079.
68. Fu, G.; Liu, W.; Li, Y.; Jin, Y.; Jiang, L.; Liang, X.; Feng, S.; Dai, Z., Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjugate chemistry 2014, 25 (9), 1655-1663.
69. Hoffman, H. A.; Chakrabarti, L.; Dumont, M. F.; Sandler, A. D.; Fernandes, R., Prussian blue nanoparticles for laser-induced photothermal therapy of tumors. RSC advances 2014, 4 (56), 29729-29734.
70. Chen, H.; Ma, Y.; Wang, X.; Wu, X.; Zha, Z., Facile synthesis of Prussian blue nanoparticles as pH-responsive drug carriers for combined photothermal-chemo treatment of cancer. RSC advances 2017, 7 (1), 248-255.
71. Cai, X.; Jia, X.; Gao, W.; Zhang, K.; Ma, M.; Wang, S.; Zheng, Y.; Shi, J.; Chen, H., A Versatile Nanotheranostic Agent for Efficient Dual‐Mode Imaging Guided Synergistic Chemo‐Thermal Tumor Therapy. Advanced Functional Materials 2015, 25 (17), 2520-2529.
72. Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P., Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304 (5671), 711-714.
73. Kwon, S. G.; Chattopadhyay, S.; Koo, B.; dos Santos Claro, P. C.; Shibata, T.; Requejo, F. l. G.; Giovanetti, L. J.; Liu, Y.; Johnson, C.; Prakapenka, V., Oxidation Induced Doping of Nanoparticles Revealed by in situ X-ray Absorption Studies. Nano letters 2016, 16 (6), 3738-3747.
74. Xie, S.; Jin, M.; Tao, J.; Wang, Y.; Xie, Z.; Zhu, Y.; Xia, Y., Synthesis and characterization of Pd@ MxCu1− x (M= Au, Pd, and Pt) nanocages with porous walls and a yolk–shell structure through galvanic replacement reactions. Chemistry–A European Journal 2012, 18 (47), 14974-14980.
75. Zhang, W.; Zhao, Y.; Malgras, V.; Ji, Q.; Jiang, D.; Qi, R.; Ariga, K.; Yamauchi, Y.; Liu, J.; Jiang, J. S., Synthesis of monocrystalline nanoframes of prussian blue analogues by controlled preferential etching. Angewandte Chemie International Edition 2016, 55 (29), 8228-8234.
76. Seuring, J.; Agarwal, S., Non‐Ionic Homo‐and Copolymers with H‐Donor and H‐Acceptor Units with an UCST in Water. Macromolecular Chemistry and Physics 2010, 211 (19), 2109-2117.
77. Yamada, N.; Okano, T.; Sakai, H.; Karikusa, F.; Sawasaki, Y.; Sakurai, Y., Thermo‐responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromolekulare Chemie, Rapid Communications 1990, 11 (11), 571-576.
78. Mori, N.; Horikawa, H.; Furukawa, H.; Watanabe, T., Macromol. Mater. Eng. 8/2007. Macromolecular Materials and Engineering 2007, 292 (8), 877-877.
79. Kanazawa, H.; Yamamoto, K.; Matsushima, Y.; Takai, N.; Kikuchi, A.; Sakurai, Y.; Okano, T., Temperature-responsive chromatography using poly (N-isopropylacrylamide)-modified silica. Analytical Chemistry 1996, 68 (1), 100-105.
80. Bae, Y. H.; Okano, T.; Hsu, R.; Kim, S. W., Thermo‐sensitive polymers as on‐off switches for drug release. Die Makromolekulare Chemie, Rapid Communications 1987, 8 (10), 481-485.
81. Bulmuş, V.; Patır, S.; Tuncel, S. A.; Pişkin, E., Stimuli-responsive properties of conjugates of N-isopropylacrylamide-co-acrylic acid oligomers with alanine, glycine and serine mono-, di-and tri-peptides. Journal of controlled release 2001, 76 (3), 265-274.
82. Asher, S. A.; Weissman, J. M.; Sunkara, H. B., Thermally switchable optical devices. Google Patents: 2000.
83. Dai, X.; Zhang, Y.; Gao, L.; Bai, T.; Wang, W.; Cui, Y.; Liu, W., A Mechanically Strong, Highly Stable, Thermoplastic, and self‐healable supramolecular polymer hydrogel. Advanced Materials 2015, 27 (23), 3566-3571.
84. Seuring, J.; Agarwal, S., First example of a universal and cost-effective approach: Polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules 2012, 45 (9), 3910-3918.
85. Nai, J.; Guan, B. Y.; Yu, L.; Lou, X. W. D., Oriented assembly of anisotropic nanoparticles into frame-like superstructures. Science advances 2017, 3 (8), e1700732.
86. Vipin, A. K.; Fugetsu, B.; Sakata, I.; Isogai, A.; Endo, M.; Li, M.; Dresselhaus, M. S., Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium. Scientific reports 2016, 6, 37009.
87. Zhang, W.; Wang, L.; Zhang, N.; Wang, G.; Fang, B., Functionalization of Single‐Walled Carbon Nanotubes with Cubic Prussian Blue and Its Application for Amperometric Sensing. Electroanalysis 2009, 21 (21), 2325-2330.
88. Shiba, F.; Fujishiro, R.; Kojima, T.; Okawa, Y., Preparation of monodisperse cobalt (II) hexacyanoferrate (III) nanoparticles using cobalt ions released from a citrate complex. The Journal of Physical Chemistry C 2012, 116 (5), 3394-3399.
89. Vilema-Enríquez, G.; Arroyo, A.; Grijalva, M.; Amador-Zafra, R. I.; Camacho, J., Molecular and cellular effects of hydrogen peroxide on human lung cancer cells: potential therapeutic implications. Oxidative medicine and cellular longevity 2016, 2016.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw