進階搜尋


下載電子全文  
系統識別號 U0026-0707201515221900
論文名稱(中文) 車聯網採用意願之因素探討
論文名稱(英文) A Study on the Usage Intention for Internet of Vehicles
校院名稱 成功大學
系所名稱(中) 高階管理碩士在職專班(EMBA)
系所名稱(英) Executive Master of Business Administration (EMBA)
學年度 103
學期 2
出版年 104
研究生(中文) 陳之偉
研究生(英文) Chih-Wei Chen
學號 R07024791
學位類別 碩士
語文別 中文
論文頁數 86頁
口試委員 指導教授-胡聯國
口試委員-蔡明田
口試委員-康信鴻
口試委員-莊雙喜
中文關鍵字 物聯網  車聯網  科技接受模型  知覺風險  創新擴散理論 
英文關鍵字 IoT  IoV  TAM  Perceived Risk  IDT 
學科別分類
中文摘要   本研究旨在探討車聯網需求因素。車聯網系統是物聯網所帶動的產業革命其重要的首波應用,著重在交通、車載通訊及電信服務。車聯網連結人、車、物、基礎建設以提供交通運輸相關的資訊通訊服務。本研究以汽車駕駛人為對象,探討汽車駕駛人採用車聯網系統的意願及其影響因素。透過實地訪談瞭解車聯網系統現況及未來發展,整合科技接受模型(TAM)、知覺風險(Perceived Risk)、自我效能(Self-Efficacy)及創新擴散理論(IDT)等理論形成研究架構。回收有效問卷370份進行驗證性因素分析及結構關係模型分析。結果顯示科技接受模型在車聯網採用意願上具有良好的解釋能力。並發現以性別、婚姻狀況、教育程度、平均每日駕車時數及慣用車輛排氣量做為干擾因素時,各組間差異具有顯著性。依據研究結果本研究將市場區隔為女性市場、男性市場及家庭市場,提出車聯網系統之消費者市場特徵,並以市場區隔與4P行銷理論,提出企業進入車聯網市場的營運建議。
英文摘要 The Internet of Vehicles (IoV) which focuses on the services of transportation, telematics and telecommunications is an important application of the Internet of Things (IOT). It provides traffic information services by collecting information about people, vehicles and infrastructure.
This study was designed to investigate the factors that affect drivers to use the Internet of Vehicles, as well as understanding the current situation and future perspectives of IoV from field interviews, and integrating the Technology Acceptance Model, Perceived Risk, Self-Efficacy and Innovation Diffusion Theory to construct a research framework.
Based on 370 valid questionnaires and analysed by CFA and SEM, the results showed that TAM model had successful explanatory power in providing using intention for IoV. Moreover, while using gender, marital status, education level, average daily driving time and engine displacement as interference factors, significant differences were noted between groups.
According to the results, the study divided the market into female, male and home categories, with the analysis of consumption characteristics and the applications of STP and 4P theories to give suggestions for those wanting to enter the IoV market.
論文目次 摘要 II
SUMMARY III
INTRODUCTION III
MATERIALS AND METHODS IV
RESULTS AND DISCUSSION IV
CONCLUSION V
誌謝 VII
目錄 VIII
表目錄 X
圖目錄 XII
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究流程 3
第四節 研究範圍與對象 3
第貳章 文獻回顧 5
第一節 物聯網與車聯網 5
第二節 台灣車聯網現況與發展 8
第三節 科技接受模型 10
第四節 自我效能 22
第五節 創新擴散理論 25
第六節 知覺風險 29
第七節 實地訪談 31
第參章 研究設計 34
第一節 研究方法 34
第二節 研究架構 34
第三節 研究假設 35
第四節 研究變項與操作性定義 36
第五節 問卷設計 38
第六節 研究對象與資料蒐集 39
第七節 資料分析方法 39
第肆章 研究結果 41
第一節 敍述性統計 41
第二節 驗證性因素分析(CFA) 45
第三節 結構關係模型(SEM) 47
第四節 研究假設驗証 50
第五節 中介效果的影響 51
第六節 干擾變數的影響 52
第七節 行為意圖集群分析 59
第伍章 結論與建議 61
第一節 研究結論 61
第二節 市場區隔與建議 65
第三節 研究限制 68
第四節 未來研究方向 69
中文參考文獻 72
英文參考文獻 73
附錄一 實地訪談問卷整理 80
附錄二 正式問卷 83
參考文獻 中文參考文獻
1. 于丹, 董大海, 劉瑞明, & 原永丹. (2008). 理性行為理論及其拓展研究的現狀與展望. Advance in Psychological Science, 頁 796-802.
2. 工業技術研究院. (2015). ICT十大關鍵議題 物聯網創新應用元年啟動. 台北市: 工業技術研究院.
3. 中國工業和信息化部電信研究所. (2014). 中歐物聯網標識白皮書. 上海: 中國工業和信息化部電信研究所.
4. 台灣車載資通訊產業協會. (2015年5月). 台灣車載資通訊產業協會. 擷取自 TTIA: http://www.ttia-tw.org/
5. 交通部. (2015). 交通部統計查詢網. 2015年5月18日 擷取自 http://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100
6. 吳萬益. (2011). 企業研究方法(第四版). 台南市: 華奉文化.
7. 國際車聯網聯盟. (2014年9月1日). IOV 2014. 擷取自 2014 International Conference on Internet of Vehicles: http://www.bjiov.org/
8. 陳順宇, & 鄭碧娥. (2005). 多變量分析(第四版). 台南市: 華泰文化.
9. 喻奉天, 蘇國瑋, 許孟祥, 王昭文, & 林盈君. (2008). 不確定性與信任對線上消費者購買意願之影響. 台北市.
10.曾光華. (2012). 行銷管理:理論解析與實務運用(第五版). 台北市: 前程文化.
英文參考文獻
1. Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, pp. 179–211.
2. Ajzen, I. (2002). Perceived behavioral control, self-efficacy, locus of control, and the theory of planned behavior. Journal of Applied Social Psychology, pp. 665-683.
3. Ajzen, I., & Madden, T. J. (1986). Prediction of goal directed behavior: Attitudes, intentions, and perceived behavioral control. Journal of Experimental Social Psychology, pp. 453-474.
4. Andreas. (2013). The Internet of Cars. Cisco.
5. Bagozzi, R. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information Systems, pp. 244-254.
6. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Academic of Marketing Science, pp. 76-94.
7. Bagozzi, R. P., Davis, F. D., & Warshaw, P. R. (1992). Development and test of a theory of technological learning and usage. Human Relations, pp. 660–686.
8. Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review. Psychological Review, pp. 191-215.
9. Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Prentice-Hall: Englewood Cliffs.
10.Bandura, A. (1988). Organizational Application of Social Cognitive Theory. Australian Journal of Management, pp. 275–302.
11.Bandura, A. (1997). Self-efficacy: The exercise of control. New York.
12.Barlow, J., Wright, C., & Cullen, L. (2002). A job-seeking self-efficacy scale for people with physical disabilities: preliminary development and psychometric testing. British Journal of Guidance and Counselling, pp. 37-53.
13.Bauer, R. A. (1960). Consumer Behavior as Risk Taking, In Risk Taking and Information Handling in Consumer Behavior. Cambridge: Harvard University Press, pp. 389-398.
14.Baumgartner, Hans, & Christian Homburg. (1996). Applications of Structural Equation Modeling in Marketing and Consumer Research: A Review. International Journal of Research in Marketing, pp. 139-161.
15.Bisschop, M. I., Knegsman, D. M. W., Beekman, A. T. F., & Deeg, D. J. H. (2004). Chronic diseases and depression: the modifying role of psychosocial resources. Social Science and Medicine, pp. 721–733.
16.Brinkerhoff, J. (2006). Effects of long-duration, professional development academy on technology skills, computer self efficacy, and technology integration beliefs and practices. Journal of Research on Technology in Education, pp. 22-43.
17.Brown, S., Massey, A., Montoya-Weiss, M., & Burkman, J. (2002). Do I really have to? User acceptance of mandated technology., pp. 283-295.
18.Burkhardt, M. E., & Brass, D. J. (1990). Changing patterns or patterns of change: The effects of a change in technology on social network structure and power. Administrative Science Quarterly, pp. 104-127.
19.Butron-Jones, A., & Hubona, G.S. (2006). The mediation of external variables in the technology acceptance model. Information & Management, pp. 706-717.
20.Chuttur M.Y. (2009). Overview of the Technology Acceptance Model: Origins, Developments and Future Directions. Working papers on Information Systems (pp. 9-37). Indiana: Indiana University.
21.Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. Management Information System Quarterly, pp. 189-211.
22.Cox, D. F., & Rich, S. V. (1964). Perceived risk and consumer decision making-The case of telephone shopping. in Risk Taking and Information Handling in Consumer Research (pp. 487-506). Cambridge, MA: Cox, D. F.
23.Csikszentmihalyi, M. (1997). Finding Flow.
24.Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, pp. 319–340.
25.Davis, F., & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: three experiments. Int. J. Human-Computer Studies, pp. 19-45.
26.Davis, F., Bagozzi, R.P., Warshaw, & P.R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, pp. 982-1003.
27.Deborah R. Compeau, & Christopher A. Higgins. (1995, Jun). Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly, pp. 189-211.
28.Delcourt, M.A.B., & Kinzie, M.B. (1993). Computer technologies in teacher education: The measurement of attitudes and self-efficacy. Journal of Research and Development in Education, pp. 35-41.
29.Dowling, G. R., & Staelin, R. (1994). A Model of Perceived Risk and Intended Risk-handling Activity. Journal of Consumer Research, pp. 119-133.
30.Fishbein, M., & Ajzen, I. (1975). Beilf, Attitude, Intention, Behavior. MA: Addision-Wesley, Reading.
31.Fornell, C., & D. F. Larcker. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Errors. Journal of Marketing Research, pp. 39-50.
32.Forsythe, M., & Shi, W. (2003). Understanding Consumers’ Behavior. Journal of Business Research, pp. 867-875.
33.GoldmanSachs. (2014, 9). Goldman Sachs. Retrieved from goldmansachs: http://www.goldmansachs.com/our-thinking/outlook/internet-of-things/
34.Hair, J.F. Jr., Anderson, R.E., Tatham, R.L., & Black, W.C. (1998). Multivariate Data Analysis(5th ed.). Englewood Cliffs, NJ: Prentice-Hal.
35.Hale, J., & Householder, B. &. (2002). The theory of reasoned action. The persuasion handbook: Developments in theory and practice, pp. 259–286.
36.Henri Barki, & Jon Hartwick. (1994, 3). Measuring User Participation, User Involvement, and User Attitude. MIS Quarterly, pp. 59-79.
37.Hsin Kuang Chi, Huery Ren Yeh, & Ya Ting Yang. (2009, 2). The Impact of Brand Awareness on Consumer Purchase Intention: The Mediating Effect of Perceived Quality and Brand Loyalty. Journal of International Management Studies, pp. 135-144.
38.Hung, C. (2014). Taiwan’s Intelligent Transportation Systems (ITS) Planning for Next Decade. Taipei: III.
39.ITU. (2012). Y.2060 Overview of the Internet of things. UN: ITU.
40.Jacoby, J., & Kaplan, L. B. (1972). The Components of Perceived Risk, in Advance in Consumer Research. Proceedings of 3ed Annual Conference, (pp. 382-393).
41.Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8 user’s reference guide. Uppsala, Sweden: Scientific Software International.
42.Joseph F. Hair Jr., William C. Black, Barry J. Babin, & Rolph E. Anderson. (2009). Multivariate Data Analysis (Ed. 7th). Prentice Hall.
43.Kaplan, L. B. (1974). Components of Perceived Risk in Product Purchase: A Cross-Validation. Journal of Applied Psychology, pp. 287-291.
44.Kashdan, T.B., & Roberts, J.E. (2004). Social anxiety’s impact on affect, curiosity, and social self–efficacy during a high self–focus social threat situation. Cognitive Therapy and Research, pp. 119-141.
45.Lee, Y., Kozar K.A., & K.R.T. (2003). The technology acceptance model: past, present, and future. Communications of the AIS, pp. 752-780.
46.Legris, P., Ingham, I., & Collerette, P. (2003). Why do people Use Information Technology? A Critical Review of the Technology Acceptance Model. Information & Management., pp. 191-204.
47.Lucas, Jr., & Henry C. (1975). Performance and the Use of an Information System. Manaement Science, pp. 908-919.
48.Luszczynska, A., & Schwarzer, R. (2005). Social cognitive theory. In M. Conner & P. Norman (Eds.), Predicting health behaviour (2nd ed. rev., pp. 127–169).
49.Mathieson, K. (1991). Predicting user intentions: comparing the TAM with the theory of planned behavior. Information Systems Research, pp. 173-191.
50.McCarthy, J. E. (1960). Basic Marketing. A Managerial Approach. Homewood, IL: Richard D. Irwin.
51.Mischel, W., & Shoda, Y. (1995). A cognitive-affective system theory of personality: Reconceptualizing situations, dispositions, dynamics, and invariance in personality structure. Psychological Review, pp. 246–268.
52.Moore, G. A. (2014). Crossing the Chasm , 3rd Edition: Marketing and Selling Disruptive Products to Mainstream Customers. New York: Collins Business Essentials.
53.Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, pp. 192-222.
54.Morris, M.G., & Venkatesh, V. (2000). Age Differences in Technology Adoption Decisions: Implications for a Changing Workforce. Personnel Psychology, pp. 375-403.
55.Needham, D. (1996). Business for Higher Awards. Oxford: Heinemann.
56.Notani, A. S. (1998). Moderators of perceived behavioral control's predictiveness in the theory of planned behavior: A meta-analysis. Journal of Consumer Psychology, pp. 247-271.
57.Ormrod, J. E. (2006). Educational psychology: Developing learners (5th ed.). Pearson/Merrill Prentice Hall: N.J.
58.Philip Kotler, & Kevin Lane Keller. (2011). A Framework for Marketing Management 5e. New Jersey: Prentice Hall.
59.Pintrich, P. R., & Schrauben, B. (1992). Students' motivational beliefs and their cognitive engagement. Student perceptions in the, (pp. 149-183). Mahwah.
60.Posthuma, R. A., & Campion, M. A. (2009). Age stereotypes in the workplace: Common stereotypes, moderators, and future research directions. Journal of Management, pp. 158-188.
61.Rogers, E. M. (1962). Diffusion of Innovations. London, NY,: Free Press.
62.Rogers, E. M. (1983). Diffusion of Innovations (3rd ed.). New York: Free Press.
63.Schunk, D. H. (1989). Self-efficacy and cognitive skill learning. Research on motivation in education, (pp. 13-44). San Diego.
64.Schunk, D. H. (1990). Goal setting and self-efficacy during self-regulated learning. Educational Psychologist, pp. 71-86.
65.Stone, R. N., & Gronhaug, K. (1993). Perceived Risk: Further Considerations for The Marketing Discipline. European Journal of Marketing, pp. 39-50.
66.Triandis, H. (1977). Interpersonal behaviour. Monterey, CA.
67.Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information systems research, pp. 342–365.
68.Venkatesh, V., & Bala, H. (2008). TAM 3: Advancing the Technology Acceptance Model with a Focus on Interventions,. Decision Sciences, pp. 273–315.
69.Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences, pp. 273–315.
70.Venkatesh, V., & Davis, F. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. Managment Science, pp. 186-204.
71.Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, pp. 186–204.
72.Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, pp. 425–478.
73.Wendell, R. (1956). Product Differentiation and Market Segmentation as Alternative Marketing Strategies. Journal of Marketing, pp. 3-8.
74.Yang, H.D., & Yoo, Y. (2003). It's All About Attitude: Revisiting the Technology Acceptance Model. Decision Support Systems., pp. 19-31.
75.Yousafzai, S.Y., Foxall, G.R., & Pallister, J.G. (2007). Technology acceptance: a meta-analysis of the TAM: Part I. Journal of Modelling in Management, pp. 251-280.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw