進階搜尋


下載電子全文  
系統識別號 U0026-0707201514563000
論文名稱(中文) 纖維母細胞生長因子9在小鼠萊氏細胞增生的效果及其可能機制
論文名稱(英文) Effect and possible mechanism of fibroblast growth factor 9 on cell proliferation in mouse Leydig cell lines
校院名稱 成功大學
系所名稱(中) 細胞生物與解剖學研究所
系所名稱(英) Institute of Cell Biology and Anatomy
學年度 103
學期 2
出版年 104
研究生(中文) 杜姿慧
研究生(英文) Tzu-Huei Tu
學號 T96024065
學位類別 碩士
語文別 英文
論文頁數 73頁
口試委員 指導教授-黃步敏
口試委員-王應然
口試委員-王仰高
口試委員-陳永佳
中文關鍵字 纖維母細胞生長因子9  萊氏細胞  細胞增生  細胞移動  細胞侵襲  細胞週期進展 
英文關鍵字 Fibroblast growth factor 9 (FGF9)  Leydig cell  cell proliferation  cell migration  cell invasion  cell cycle progression 
學科別分類
中文摘要 纖維母細胞生長因子能夠與其接受器交互作用以調控大部分的生物功能:像是細胞增生、抗凋亡、細胞移行以及細胞分化。之前的研究顯示:纖維母細胞生長因子9在胚胎發育中扮演非常重要的角色但是其蛋白質表現在人體器官中非常低。纖維母細胞生長因子9亦被報導可參與性別決定。在本實驗室之前的研究已經證實纖維母細胞生長因子9能夠在小鼠萊氏細胞中透過MAPK、PI3K及PKA訊號傳遞路徑以刺激固醇類荷爾蒙的生成。另一方面,之前研究已經指出異常表現的纖維母細胞生長因子9能夠造成人類大腸癌、卵巢癌以及前列腺癌的發生。此外纖維母細胞生長因子9能夠增加卵巢癌的細胞增生速率和細胞移動能力。這些現象說明著過度表現纖維母細胞生長因子9能夠導致癌症的發生。在此,我們想要探討纖維母細胞生長因子9對於小鼠萊氏細胞與小鼠萊氏腫瘤細胞的效果。結果顯示纖維母細胞生長因子9能夠明顯的增加TM3細胞存活率以及在MA-10細胞中有增加的趨勢產生。細胞增生相關標準蛋白增殖细胞核抗原(PCNA and Ki67)經過纖維母細胞生長因子9處理後在TM3細胞中顯著增加,但在MA-10中卻沒有看到此現象。另外,我們發現纖維母細胞生長因子9能夠增加5-乙炔基-2'-脫氧尿苷(EdU)的表現在這兩株細胞中。在訊息傳遞的機制探討中,纖維母細胞生長因子9 在這兩株細胞中沒有活化AKT/mTOR 路徑。然而纖維母細胞生長因子9在TM3細胞中能夠活化磷酸化的JNK以及ERK1/2;在MA-10則是活化ERK1/2。甚至纖維母細胞生長因子9在TM3細胞中能夠活化PLCγ1的表現,但在MA-10中則是沒有活化。碘化丙啶(PI)染色研究更能偵測纖維母細胞生長因子9在細胞週期進展的效果。我們發現纖維母細胞生長因子9在TM3細胞中能夠促進細胞週期的進展,而在MA-10中則沒有看到此現象。另外,細胞週期的相關蛋白質週期蛋白依赖性激酶1、2、4 (CDK1、2、4)以及細胞週期調節蛋白A、B、D1(Cyclin A、B、D1)都在TM3中明顯的增加,而MA-10則沒有增加的現象。此外纖維母細胞生長因子9在TM3細胞中能夠抑制細胞週期抑制蛋白p27而在MA-10則沒有看到此現象。除此之外,藉由細胞刮傷試驗發現,纖維母細胞生長因子9在加入到TM3細胞後3、6、9小時以及加入MA-10細胞後的48小時能夠明顯促進細胞移動。另外,在轉移盤試驗中顯示,纖維母細胞生長因子9明顯促進這兩株細胞的細胞移動和細胞侵襲能力。總結來說,纖維母細胞生長因子9能夠促進細胞增生在TM3細胞透過活化訊息傳遞和加速細胞週期進展。然而,纖維母細胞生長因子9只能透過活化ERK1/2的表現來產生些許效果幫助MA-10細胞增生。除此之外,我們也證實纖維母細胞生長因子9能夠增強細胞移動和侵襲的能力在TM3和MA-10細胞中。
英文摘要 Fibroblast growth factors (FGFs) interacts with its receptor, fibroblast growth factor receptor (FGFR), to control a wide range of biological functions, such as cell proliferation, anti-apoptosis, migration and differentiation. Previous studies have shown that fibroblast growth factors 9 (FGF9) has an important role in embryo development, and FGF9 protein level is low and the expression of FGF9 is restricted in few adult organs. FGF9 is found to be involved in sex-determination. In our lab, we have demonstrated that FGF9 stimulated steroidogenesis in mouse Leydig cells through MAPK, PI3K and PKA signal transduction pathways. On the other hand, studies have reported that abnormal expression of FGF9 usually results in colon, ovarian and prostate cancers in human. Also, study indicated that FGF9 could increase proliferation rate and cell mobility in ovarian cancer. These phenomena illustrated that over-expression of FGF9 could contribute to the cancer occurrence. Here, we sought to investigate the roles of FGF9 on mouse Leydig normal and tumor cell line. The results showed that FGF9 could increase cell viability in TM3 with an increased trend in MA-10. The proliferation related marker proteins PCNA and Ki67 were significantly increased after FGF9 treatment in TM3 not in MA-10. However, we found that FGF9 could increase EDU positive cell in these cell lines. In mechanistic study, AKT/mTOR pathway was not activated upon FGF9 treatment in both of cell lines, whereas FGF9 could active phosphor-JNK and -ERK1/2 in TM3 and phosphor-ERK1/2 in MA-10. FGF9 could also activate the expression of PLCγ1 in TM3 cells, but not in MA-10 cells. PI staining study further detected the effect of FGF9 on cell cycle regulation. We found that FGF9 promoted cell cycle progression in TM3 but not in MA-10 cells. The cell cycle related proteins CDK1, CDK2, CDK4, cyclin A, cyclin B, cyclin D1 were increased in TM3 but not in MA-10. Besides, the cell cycle inhinitory proteins p27 was decreased in TM3 but not in MA-10. In addition, FGF9 significantly increased cell migration in TM3 after 3, 9 and 12 hr and MA-10 after 48 hr treatments, respectively, in wound-healing assay. Also, the transwell assay showed that both migration and invasion were increased in both TM3 and MA-10 cell lines. In conclusion, FGF9 induces cell proliferation on TM3 cells through the activation of signal transduction and speed up cell cycle progression, whereas, FGF9 only activates ERK to have a minor effect on cell proliferation in MA-10 cells. Besides, FGF9 could enhance on cell migration and invasion in TM3 and MA-10 cells.
論文目次 TABLE OF CONTENTS

ABSTRACTS
Chinese abstract.........I
English abstract.......III
ACKNOWLEDGMENT........V
TABLE OF CONTENTS........VI
LIST OF FIGURES........VIII

INTRODUCTION.......1

MATERIALS AND METHODS
Chemicals.........6
Cell Culture.........7
MTT assay…...….........7
Cell Cycle Analysis.........8
Protein Collection and Western Blotting ………......8
Wound-healing assay…………........9
Trans-well assay…………………………………....9
EdU Cell Incorporation assay……………………………….…………………………..10
Statistical Analysis........10

RESULTS

Effects of FGF9 on cell proliferation in mouse Leydig cell lines…………..11
Effects of FGF9 on cell proliferation with EdU incorporation assay in mouse Leydig cell line…..………………………………………………….....11
Effects of FGF9 on the protein levels of cell proliferation-related proteins, proliferating cell nuclear antigen (PCNA) and Ki67, in mouse Leydig cell lines….………………………………………………………………………….……...11
Effects of FGF9 on the distribution of cell cycle in mouse Leydig cell lines…….12
Effects of FGF9 on the protein levels of cell cycle-related proteins in mouse Leydig cell lines……………………………………………………………………………..…..13
Effects of FGF9 on the p53 pathway in mouse Leydig cell lines...14
Effects of FGF9 on cell mobility in mouse Leydig cell lines...15
Effects of FGF9 on the protein levels of AKT/mTOR pathway in mouse Leydig cell lines..........16
Effects of FGF9 on the protein levels of MAPK pathway in mouse Leydig cell lines..........17
Effects of FGF9 on the protein levels of PLC pathway in mouse Leydig cell lines..........17
Effects of FGF9 on the protein levels of FGFRs in mouse Leydig cell lines..........18

DISCUSSION.........19

REFERENCES..........66
參考文獻 Abiuso AM, Berensztein E, Pagotto RM, Pereyra EN, Medina V, Martinel Lamas DJ, Besio Moreno M, Pignataro OP, Mondillo C (2014) H4 histamine receptors inhibit steroidogenesis and proliferation in Leydig cells. The Journal of endocrinology 223:241-253.
Albini A (1998) Tumor and endothelial cell invasion of basement membranes. The matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathology oncology research : POR 4:230-241.
Arai D, Hegab AE, Soejima K, Kuroda A, Ishioka K, Yasuda H, Naoki K, Kagawa S, Hamamoto J, Yin Y, Ornitz DM, Betsuyaku T (2015) Characterization of the cell of origin and propagation potential of the fibroblast growth factor 9-induced mouse model of lung adenocarcinoma. The Journal of pathology 235:593-605.
Ariyaratne HB, Mills N, Mason JI, Mendis-Handagama SM (2000) Effects of thyroid hormone on Leydig cell regeneration in the adult rat following ethane dimethane sulphonate treatment. Biology of reproduction 63:1115-1123.
Baird A, Ling N (1987) Fibroblast growth factors are present in the extracellular matrix produced by endothelial cells in vitro: implications for a role of heparinase-like enzymes in the neovascular response. Biochemical and biophysical research communications 142:428-435.
Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I (1989) Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28:1737-1743.
Bates S, Vousden KH (1996) p53 in signaling checkpoint arrest or apoptosis. Current opinion in genetics & development 6:12-18.
Berridge MJ (1995) Calcium signalling and cell proliferation. BioEssays : news and reviews in molecular, cellular and developmental biology 17:491-500.
Boilly B, Vercoutter-Edouart AS, Hondermarck H, Nurcombe V, Le Bourhis X (2000) FGF signals for cell proliferation and migration through different pathways. Cytokine & growth factor reviews 11:295-302.
Bretones G, Delgado MD, Leon J (2015) Myc and cell cycle control. Biochimica et biophysica acta 1849:506-516.
Browaeys-Poly E, Blanquart C, Perdereau D, Antoine AF, Goenaga D, Luzy JP, Chen H, Garbay C, Issad T, Cailliau K, Burnol AF (2010) Grb14 inhibits FGF receptor signaling through the regulation of PLCgamma recruitment and activation. FEBS letters 584:4383-4388.
Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655-1657.
Chen TM, Shih YH, Tseng JT, Lai MC, Wu CH, Li YH, Tsai SJ, Sun HS (2014) Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation. Nucleic acids research 42:2932-2944.
Choi C, Helfman DM (2014) The Ras-ERK pathway modulates cytoskeleton organization, cell motility and lung metastasis signature genes in MDA-MB-231 LM2. Oncogene 33:3668-3676.
Colvin JS, White AC, Pratt SJ, Ornitz DM (2001a) Lung hypoplasia and neonatal death in Fgf9-null mice identify this gene as an essential regulator of lung mesenchyme. Development 128:2095-2106.
Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM (2001b) Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104:875-889.
Cotton LM, O'Bryan MK, Hinton BT (2008) Cellular signaling by fibroblast growth factors (FGFs) and their receptors (FGFRs) in male reproduction. Endocrine reviews 29:193-216.
Coughlin SR, Barr PJ, Cousens LS, Fretto LJ, Williams LT (1988) Acidic and basic fibroblast growth factors stimulate tyrosine kinase activity in vivo. The Journal of biological chemistry 263:988-993.
Czubayko F, Liaudet-Coopman ED, Aigner A, Tuveson AT, Berchem GJ, Wellstein A (1997) A secreted FGF-binding protein can serve as the angiogenic switch in human cancer. Nature medicine 3:1137-1140.
Deitch AD, Law H, deVere White R (1982) A stable propidium iodide staining procedure for flow cytometry. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 30:967-972.
Doukas J, Blease K, Craig D, Ma C, Chandler LA, Sosnowski BA, Pierce GF (2002) Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle. Molecular therapy : the journal of the American Society of Gene Therapy 5:517-527.
Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine & growth factor reviews 16:139-149.
Fei Y, Gronowicz G, Hurley MM (2013) Fibroblast growth factor-2, bone homeostasis and fracture repair. Current pharmaceutical design 19:3354-3363.
Flaumenhaft R, Moscatelli D, Rifkin DB (1990) Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. The Journal of cell biology 111:1651-1659.
Flaumenhaft R, Moscatelli D, Saksela O, Rifkin DB (1989) Role of extracellular matrix in the action of basic fibroblast growth factor: matrix as a source of growth factor for long-term stimulation of plasminogen activator production and DNA synthesis. Journal of cellular physiology 140:75-81.
Follo MY, Manzoli L, Poli A, McCubrey JA, Cocco L (2015) PLC and PI3K/Akt/mTOR signalling in disease and cancer. Advances in biological regulation 57:10-16.
Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. Journal of immunology 133:1710-1715.
Giri D, Ropiquet F, Ittmann M (1999) FGF9 is an autocrine and paracrine prostatic growth factor expressed by prostatic stromal cells. Journal of cellular physiology 180:53-60.
Gospodarowicz D, Cheng J (1986) Heparin protects basic and acidic FGF from inactivation. Journal of cellular physiology 128:475-484.
Greenhalgh DG, Sprugel KH, Murray MJ, Ross R (1990) PDGF and FGF stimulate wound healing in the genetically diabetic mouse. The American journal of pathology 136:1235-1246.
Gursel DB, Connell-Albert YS, Tuskan RG, Anastassiadis T, Walrath JC, Hawes JJ, Amlin-Van Schaick JC, Reilly KM (2011) Control of proliferation in astrocytoma cells by the receptor tyrosine kinase/PI3K/AKT signaling axis and the use of PI-103 and TCN as potential anti-astrocytoma therapies. Neuro-oncology 13:610-621.
Habert R, Lejeune H, Saez JM (2001) Origin, differentiation and regulation of fetal and adult Leydig cells. Molecular and cellular endocrinology 179:47-74.
Hardy MP, Zirkin BR, Ewing LL (1989) Kinetic studies on the development of the adult population of Leydig cells in testes of the pubertal rat. Endocrinology 124:762-770.
Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266:1821-1828.
Hendrix ND, Wu R, Kuick R, Schwartz DR, Fearon ER, Cho KR (2006) Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer research 66:1354-1362.
Hu MC, Qiu WR, Wang YP, Hill D, Ring BD, Scully S, Bolon B, DeRose M, Luethy R, Simonet WS, Arakawa T, Danilenko DM (1998) FGF-18, a novel member of the fibroblast growth factor family, stimulates hepatic and intestinal proliferation. Molecular and cellular biology 18:6063-6074.
Huang JS, Huang SS, Kuo MD (1986) Bovine brain-derived growth factor. Purification and characterization of its interaction with responsive cells. The Journal of biological chemistry 261:11600-11607.
Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA (1994) Tumor spectrum analysis in p53-mutant mice. Current biology : CB 4:1-7.
Jiang G, Hunter T (1999) Receptor signaling: when dimerization is not enough. Current biology : CB 9:R568-571.
Jiang Q, Zhou C, Bi Z, Wan Y (2006) EGF-induced cell migration is mediated by ERK and PI3K/AKT pathways in cultured human lens epithelial cells. Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics 22:93-102.
Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911-1912.
Kalinina J, Dutta K, Ilghari D, Beenken A, Goetz R, Eliseenkova AV, Cowburn D, Mohammadi M (2012) The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure 20:77-88.
Korkolopoulou P, Oates J, Kittas C, Crocker J (1994) p53, c-myc p62 and proliferating cell nuclear antigen (PCNA) expression in non-Hodgkin's lymphomas. Journal of clinical pathology 47:9-14.
Kornasio R, Riederer I, Butler-Browne G, Mouly V, Uni Z, Halevy O (2009) Beta-hydroxy-beta-methylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation and survival via the MAPK/ERK and PI3K/Akt pathways. Biochimica et biophysica acta 1793:755-763.
Kornbluth S, Paulson KE, Hanafusa H (1988) Novel tyrosine kinase identified by phosphotyrosine antibody screening of cDNA libraries. Molecular and cellular biology 8:5541-5544.
Kubben FJ, Peeters-Haesevoets A, Engels LG, Baeten CG, Schutte B, Arends JW, Stockbrugger RW, Blijham GH (1994) Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut 35:530-535.
Lai MS, Cheng YS, Chen PR, Tsai SJ, Huang BM (2014) Fibroblast growth factor 9 activates akt and MAPK pathways to stimulate steroidogenesis in mouse leydig cells. PloS one 9:e90243.
Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? Journal of cell science 114:2903-2910.
Lee PL, Johnson DE, Cousens LS, Fried VA, Williams LT (1989) Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 245:57-60.
Lin YM, Tsai CC, Chung CL, Chen PR, Sun HS, Tsai SJ, Huang BM (2010) Fibroblast growth factor 9 stimulates steroidogenesis in postnatal Leydig cells. International journal of andrology 33:545-553.
Lovicu FJ, Overbeek PA (1998) Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice. Development 125:3365-3377.
Lovicu FJ, McAvoy JW (2001) FGF-induced lens cell proliferation and differentiation is dependent on MAPK (ERK1/2) signalling. Development 128:5075-5084.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. The Journal of biological chemistry 193:265-275.
Luqmani YA, Graham M, Coombes RC (1992) Expression of basic fibroblast growth factor, FGFR1 and FGFR2 in normal and malignant human breast, and comparison with other normal tissues. British journal of cancer 66:273-280.
Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261-1274.
Marshall J (2011) Transwell((R)) invasion assays. Methods in molecular biology 769:97-110.
Matsumoto-Yoshitomi S, Habashita J, Nomura C, Kuroshima K, Kurokawa T (1997) Autocrine transformation by fibroblast growth factor 9 (FGF-9) and its possible participation in human oncogenesis. International journal of cancer Journal international du cancer 71:442-450.
McAvoy JW, Chamberlain CG (1989) Fibroblast growth factor (FGF) induces different responses in lens epithelial cells depending on its concentration. Development 107:221-228.
Mendis-Handagama SM, Ariyaratne HB (2001) Differentiation of the adult Leydig cell population in the postnatal testis. Biology of reproduction 65:660-671.
Miki T, Fleming TP, Bottaro DP, Rubin JS, Ron D, Aaronson SA (1991) Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 251:72-75.
Miller MW, Nowakowski RS (1988) Use of bromodeoxyuridine-immunohistochemistry to examine the proliferation, migration and time of origin of cells in the central nervous system. Brain research 457:44-52.
Miyamoto M, Naruo K, Seko C, Matsumoto S, Kondo T, Kurokawa T (1993) Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unique secretion property. Molecular and cellular biology 13:4251-4259.
Munaron L (2002) Calcium signalling and control of cell proliferation by tyrosine kinase receptors (review). International journal of molecular medicine 10:671-676.
Muskhelishvili L, Latendresse JR, Kodell RL, Henderson EB (2003) Evaluation of cell proliferation in rat tissues with BrdU, PCNA, Ki-67(MIB-5) immunohistochemistry and in situ hybridization for histone mRNA. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 51:1681-1688.
Naruo K, Seko C, Kuroshima K, Matsutani E, Sasada R, Kondo T, Kurokawa T (1993) Novel secretory heparin-binding factors from human glioma cells (glia-activating factors) involved in glial cell growth. Purification and biological properties. The Journal of biological chemistry 268:2857-2864.
Nurse P (1994) Ordering S phase and M phase in the cell cycle. Cell 79:547-550.
Olsen SK, Ibrahimi OA, Raucci A, Zhang F, Eliseenkova AV, Yayon A, Basilico C, Linhardt RJ, Schlessinger J, Mohammadi M (2004) Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proceedings of the National Academy of Sciences of the United States of America 101:935-940.
Ornitz DM (2000) FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays : news and reviews in molecular, cellular and developmental biology 22:108-112.
Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome biology 2:REVIEWS3005.
Ornitz DM, Itoh N (2015) The Fibroblast Growth Factor signaling pathway. Wiley interdisciplinary reviews Developmental biology.
Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, Kolch W (2005) Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. The Biochemical journal 392:249-261.
Park JS, Kim YS, Yoo MA (2009) The role of p38b MAPK in age-related modulation of intestinal stem cell proliferation and differentiation in Drosophila. Aging 1:637-651.
Price JT, Tiganis T, Agarwal A, Djakiew D, Thompson EW (1999) Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3'-kinase and phospholipase C-dependent mechanism. Cancer research 59:5475-5478.
Primiceri E, Chiriaco MS, Dioguardi F, Monteduro AG, D'Amone E, Rinaldi R, Giannelli G, Maruccio G (2011) Automatic transwell assay by an EIS cell chip to monitor cell migration. Lab on a chip 11:4081-4086.
Reuss B, von Bohlen und Halbach O (2003) Fibroblast growth factors and their receptors in the central nervous system. Cell and tissue research 313:139-157.
Rodriguez LG, Wu X, Guan JL (2005) Wound-healing assay. Methods in molecular biology 294:23-29.
Saksela O, Moscatelli D, Sommer A, Rifkin DB (1988) Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation. The Journal of cell biology 107:743-751.
Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211-225.
Schlessinger J, Lax I, Lemmon M (1995) Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83:357-360.
Sherr CJ (1993) Mammalian G1 cyclins. Cell 73:1059-1065.
Smallwood PM, Munoz-Sanjuan I, Tong P, Macke JP, Hendry SH, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J (1996) Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proceedings of the National Academy of Sciences of the United States of America 93:9850-9857.
Tahka KM (1986) Current aspects of Leydig cell function and its regulation. Journal of reproduction and fertility 78:367-380.
Tarcic G, Yarden Y (2010) MAP Kinase activation by receptor tyrosine kinases: in control of cell migration. Methods in molecular biology 661:125-135.
Teerds KJ, Huhtaniemi IT (2015) Morphological and functional maturation of Leydig cells: from rodent models to primates. Human reproduction update.
Teishima J, Shoji K, Hayashi T, Miyamoto K, Ohara S, Matsubara A (2012) Relationship between the localization of fibroblast growth factor 9 in prostate cancer cells and postoperative recurrence. Prostate cancer and prostatic diseases 15:8-14.
Tessier DM, Matsumura F (2001) Increased ErbB-2 tyrosine kinase activity, MAPK phosphorylation, and cell proliferation in the prostate cancer cell line LNCaP following treatment by select pesticides. Toxicological sciences : an official journal of the Society of Toxicology 60:38-43.
Todo T, Kondo T, Nakamura S, Kirino T, Kurokawa T, Ikeda K (1998) Neuronal localization of fibroblast growth factor-9 immunoreactivity in human and rat brain. Brain research 783:179-187.
Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nature reviews Cancer 10:116-129.
Vandermoere F, El Yazidi-Belkoura I, Adriaenssens E, Lemoine J, Hondermarck H (2005) The antiapoptotic effect of fibroblast growth factor-2 is mediated through nuclear factor-kappaB activation induced via interaction between Akt and IkappaB kinase-beta in breast cancer cells. Oncogene 24:5482-5491.
Vial E, Sahai E, Marshall CJ (2003) ERK-MAPK signaling coordinately regulates activity of Rac1 and RhoA for tumor cell motility. Cancer cell 4:67-79.
Vlodavsky I, Folkman J, Sullivan R, Fridman R, Ishai-Michaeli R, Sasse J, Klagsbrun M (1987) Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proceedings of the National Academy of Sciences of the United States of America 84:2292-2296.
Wang F, Kan M, Yan G, Xu J, McKeehan WL (1995) Alternately spliced NH2-terminal immunoglobulin-like Loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1. The Journal of biological chemistry 270:10231-10235.
Warren M, Puskarczyk K, Chapman SC (2009) Chick embryo proliferation studies using EdU labeling. Developmental dynamics : an official publication of the American Association of Anatomists 238:944-949.
Werner S, Peters KG, Longaker MT, Fuller-Pace F, Banda MJ, Williams LT (1992) Large induction of keratinocyte growth factor expression in the dermis during wound healing. Proceedings of the National Academy of Sciences of the United States of America 89:6896-6900.
Wesche J, Haglund K, Haugsten EM (2011) Fibroblast growth factors and their receptors in cancer. The Biochemical journal 437:199-213.
Willerton L, Smith RA, Russell D, Mackay S (2004) Effects of FGF9 on embryonic Sertoli cell proliferation and testicular cord formation in the mouse. The International journal of developmental biology 48:637-643.
Zeigler ME, Chi Y, Schmidt T, Varani J (1999) Role of ERK and JNK pathways in regulating cell motility and matrix metalloproteinase 9 production in growth factor-stimulated human epidermal keratinocytes. Journal of cellular physiology 180:271-284.
Zhang W, Liu HT (2002) MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell research 12:9-18.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw