進階搜尋


下載電子全文  
系統識別號 U0026-0706201223013800
論文名稱(中文) 使用游標相位計之高精確度超音波量測系統
論文名稱(英文) A Highly Accurate Ultrasonic Measurement System Using Vernier Caliper Phase Meter
校院名稱 成功大學
系所名稱(中) 電機工程學系碩博士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 李克宇
研究生(英文) Ke-Yu Lee
學號 N28941476
學位類別 博士
語文別 英文
論文頁數 48頁
口試委員 召集委員-黃廣志
口試委員-楊順聰
口試委員-廖斌毅
口試委員-李彥杰
口試委員-任善隆
口試委員-黃克穠
指導教授-羅錦興
共同指導教授-楊明興
中文關鍵字 雙頻連續波  游標相位計  直接數位頻率合成器  超音波距離量測系統  超音波溫度量測系統  相位量測  鎖相迴路 
英文關鍵字 two-frequency continuous wave  vernier caliper phase meter  direct digital frequency synthesizer  ultrasonic distance measurement system  ultrasonic temperature measurement system  phase measurement  phase locked loops 
學科別分類
中文摘要 精密的距離與溫度量測在科學與工業應用上是非常重要的技術。對於距離與溫度量測而言,超音波感測器是一個很適合的量測工具。超音波的檢測技術主要可分為飛行時間法與相位差法。兩者相較,相位差法具有較高的準確度但有量測範圍較小的缺點。此一缺點可藉由發射多個頻率相近的超音波信號,並透過降低信號之間的頻率差值來增加量測範圍。
本論文探討的是採用雙頻連續波相位差法的距離和空氣平均溫度量測系統。雙頻連續波相位差法是由發射端依序發射兩組不同頻率的連續超音波信號,待音波傳遞至接收端後,經由相位計量測發射波與接收波之間的相位差後,再換算出欲測量的距離或溫度值。其中,相位差的量測是採用游標相位計,用以提高系統的解析度與準確度。論文的第一部分描述的是高精確度的超音波距離量測系統。在系統中,使用兩組游標相位計分別測量兩個不同頻率信號的發射波與接收波之間的相位差。游標相位計電路設計是模擬游標尺的工作原理來量測相位差,它可以在不增加時脈頻率的條件下,得到比傳統計數式相位計高的解析度(約為平方倍)並可消除其計數誤差。論文的第二部分,我們展現了另一項採用經過改良的雙頻連續波信號產生器的超音波溫度量測系統應用設計。系統中的雙頻連續波發射信號是由直接數位頻率合成器產生。直接數位頻率合成器可以精確的控制輸出信號的頻率,並具有頻率轉換平順、快速等優點。在相位量測部分,也同樣採用游標相位計來量測發射波與接收波之間的相位差。系統量測到的相位差資料會被記錄下來,並用來計算音波的速度變化。藉著量測空氣中的音速變化,再換算出空氣中平均溫度的變化。
超音波量測實驗是在溫控箱中進行,在溫控箱中安裝兩個頻率範圍為 40 ± 2 kHz的超音波感測器,並以單晶片微電腦控制兩個連續波信號的發射及相位偵測,計算並紀錄相位差的資訊,再將相關資料送到 PC 計算出距離或溫度值並進行校正。在距離量測系統中,發射及接收端的超音波感測器是安裝在溫控箱的同一邊,以增加系統的實用性。實驗結果顯示,當量測範圍為 50 到 200 mm 時,準確度可達 ± 0.1362 mm,解析度為 40 kHz 信號波長的 0.04%。溫度量測系統則是在溫控箱中,以面對面方式安裝兩個相距1 m的超音波感測器。實驗結果顯示,當量測範圍為 0 到 80 ℃ 時,本系統的準確度可達到 ±0.2 ℃,解析度為 0.01%。
本論文所提出的雙頻連續波相位差法超音波量測系統,可以透過直接數位頻率合成器精確控制兩個超音波發射信號的頻率差,便可增加量測範圍。並可藉由增加游標相位計的主尺與動尺刻度,即可輕易提高相位量測的解析度。與多頻連續波相位差法比較,透過我們所提出的新型超音波量測系統架構,只需要發射兩個超音波信號,即可達到大範圍和高精確度的量測目的,並不需要再增加發射信號,可降低系統複雜度及減少量測時間。因此,我們提出的新型超音波量測系統具有高解析度、 高準確度、低成本及容易實現等優點。
英文摘要 Precise measurements of distance and temperature are very important in scientific research and industrial applications. Ultrasonic transducer, a superior choice for distance and temperature measurement, has the advantages such as fast response and contactless operation. Many techniques are available for ultrasonic measurement system mainly includes the time-of-flight (TOF) method and the phase-shift method (PSM). In comparison to the TOF method, the PSM is more accurate and overcomes the delay inertia phenomenon and amplitude attenuation problems, but the range of measurement is limited by a full wavelength. This limitation can be overcome by using such a technique as the multiple-frequency continuous-wave (MFCW) PSM, in which the frequency differences of multiple signals can be decreased to expand the ranges of measurement much greater than one wavelength.
The main aim of this dissertation is to discuss a measurement system based on two frequency continuous wave (TFCW) ultrasonic phase shift method to measure distance and average temperature in air. Two signals with different frequency are generated and sequentially transmitted to the receiver. The phase shift between the transmitted and received signals are then detected and used to compute the distance or temperature data. Especially, the phase shift is measured via a vernier caliper phase meter (VCPM) to improve the accuracy and resolution of the system. A highly accurate TFCW ultrasonic distance measurement system (UDMS) for use in air is described in the first part of this dissertation. In the system, two VCPMs are used to measure the phase-shift data. The phase meter circuit developed to emulate the vernier caliper to measure the phase shift is able to eliminate the measuring errors and produce higher-resolution results without increasing the clock frequency. In the second part of this dissertation, we present an improved system structure for TFCW ultrasonic temperature measurement. The system is based on the transmission of a TFCW signal that is generated by two direct digital frequency synthesizers (DDFSs). The advantages of the DDFS include fine frequency step, smooth frequency transition, and fast switching speed. The phase shift between the transmitted and received signals is also measured by a VCPM. The phase shift data is recorded to determine the speed of ultrasound. The changes in the speed of ultrasound are then calculated and used to determine the average temperature of bulk air.
In the test embodiment, two 40 ± 2 kHz ultrasonic transducers are placed in the temperature-controlled chamber. A single-chip microprocessor is used to control the two frequency continuous wave phase-shift measurement and send the data to a personal computer for the calibration and examination of distance or temperature measurement. In the UDMS, two ultrasonic transducers are placed at the same side of the chamber for practicality. The experimental results show that the accuracy of the system is ± 0.1362 mm and the distance resolution is 0.04% of the wavelength corresponding to the 40 kHz ultrasonic wave at a range of 50-200 mm. Furthermore, in the UTMS, two ultrasonic transducers are placed face to face with a fixed distance (1 m) between them. The experimental results show that the proposed measurement system reaches a high accuracy of ±0.2℃ within a temperature range from 0 to 80℃, with a resolution of 0.01%.
Therefore, the ultrasonic measurement system presented in this dissertation can expand the range of measurement by using DDFS to control the frequency difference of the transmitted signal precisely. The resolution of phase measurement can be improved by increasing the main and vernier scales of the VCPM. Comparing with the system using MFCW phase shift method, the measurement range of our system can easily be expanded just by using two signals, instead of increasing the number of transmitting signals. Therefore, the system complexity can be decreased and the total measuring time of the system can be saved. In conclusion, the main advantages of our ultrasonic measurement systems include high resolution, high accuracy, low cost, and ease of implementation.
論文目次 中文摘要 I
ABSTRACT IV
誌謝 VIII
LIST OF TABLES XI
LIST OF FIGURES XII
CHAPTER 1 INTRODUCTION 1
1.1 ULTRASONIC DISTANCE MEASUREMENT 1
1.2 ULTRASONIC TEMPERATURE MEASUREMENT 4
CHAPTER 2 METHODS 7
2.1 TFCW PHASE SHIFT METHOD AND DISTANCE COMPUTATIONS 7
2.2 TFCW-BASED ULTRASONIC SYSTEM AND TEMPERATURE COMPUTATIONS 12
2.3 DIRECT DIGITAL FREQUENCY SYNTHESIZER 15
2.4 VERNIER CALIPER PHASE METER 17
CHAPTER 3 SYSTEM IMPLEMENTATION AND EVALUATION 20
3.1 ULTRASONIC DISTANCE MEASUREMENT SYSTEM 20
3.1.1 HARDWARE DESCRIPTION 21
3.1.2 SOFTWARE DESCRIPTION 24
3.1.3 EXPERIMENTAL SETUP 26
3.1.4 EXPERIMENTAL RESULTS 27
3.2 ULTRASONIC TEMPERATURE MEASUREMENT SYSTEM 32
3.2.1 HARDWARE DESCRIPTION 33
3.2.2 SOFTWARE DESCRIPTION 35
3.2.3 EXPERIMENTAL SETUP 37
3.2.4 EXPERIMENTAL RESULTS 38
CHAPTER 4 DISCUSSION 41
CHAPTER 5 CONCLUSIONS 43
REFERENCES 45
參考文獻 [1]M. Parrilla, J. J. Anaya, and C. Fritsch, “Digital signal-processing techniques for high accuracy ultrasonic range measurements,” IEEE Trans. Instrum. meas., vol. 40, pp. 759-763, Aug. 1991.
[2]D. Marioli, C. Narduzzi, C. Offelli, D. Petri, E. Sardini, and A. Taroni, “Digital time-of-flight measurement for ultrasonic sensors,” IEEE Trans. Instrum. meas., vol. 41, pp. 93-97, Feb. 1992.
[3]C. Cai, and P. P .L. Regtien, “Accurate digital time-of-flight measurement using self-interference,” IEEE Trans. Instrum. meas., vol. 42, pp. 990-994, Dec. 1993.
[4]G. Tardajos, G. G. Gaitano, and F. R. M. de Espinosa, “Accurate, sensitive, and fully automatic method to measure sound velocity and attenuation,” Rev. Sci. Instrum., vol. 65, pp. 2933-2938, Sep. 1994.
[5]F. Figueroa, and E. Barbieri, “An ultrasonic ranging system for structural vibration measurements,” IEEE Trans. Instrum. meas., vol. 40, pp. 764-769, Aug. 1991.
[6]M. S. Young, and Y. C. Li, “A high precision ultrasonic system for vibration measurements,” Rev. Sci. Instrum., vol. 63, pp. 5435-5441, Nov. 1992.
[7]F. E. Gueuning, M. Varlan, C. E. Eugene, and P. Dupuis, “Accurate distance measurement by an autonomous ultrasonic system combing time-of-flight and phase-shift methods,” IEEE Trans. Instrum. meas., vol. 46, pp. 1236-1240, Dec. 1997.
[8]C. C. Tong, J. F. Figueroa, and E. Barbieri, “A method for short or long range time-of-flight measurements using phase-detection with an analog circuit,” IEEE Trans. Instrum. meas., vol. 50, pp. 1324-1328, Oct. 2001.
[9]M. Yang, S. L. Hill, and J. O. Gray, “A multifrequency am-based ultrasonic system for accuracy distance measurement,” IEEE Trans. Instrum. meas., vol. 43, pp. 861-866, Dec. 1994.
[10]D. Webster, “A pulsed ultrasonic distance measurement system based upon phase digitizing,” IEEE Trans. Instrum. meas., vol. 43, pp. 578-582, Aug. 1994.
[11]S. S. Huang, C. F. Huang, K. N. Huang and M. S. Young, “A high accuracy ultrasonic distance measurement system using binary frequency shift-keyed signal and phase detection,” Rev. Sci. Instrum., vol. 73, pp. 3671–3677, Oct. 2002.
[12]C. F. Huang, M. S. Young, and Y. C. Li, “Multiple-frequency continuous wave ultrasonic system for accurate distance measurement,” Rev. Sci. Instrum., vol. 70, pp. 1452-1458, Feb. 1999.
[13]K. N. Huang, and Y. P. Huang, “Multiple-frequency ultrasonic distance measurement using direct digital frequency synthesizers,” Sens. Actuators A, vol. 149, pp. 42-50, Jan. 2009.
[14]Y. P. Huang, J. S. Wang, K. N. Huang, C. T. Ho, J. D. Huang, and M. S. Young, “Envelope pulsed ultrasonic distance measurement system based upon amplitude modulation and phase modulation,” Rev. Sci. Instrum., vol. 78, pp. 065103-1~8, Jun. 2007.
[15]L. Angrisani, A. Baccigalupi, and R. S. L. Moriello, “A measurement method based on Kalman filtering for Ultrasonic time-of-flight estimation,” IEEE Trans. Instrum. meas., vol. 55, pp. 442-448, Apr. 2006.
[16]H. P. Lio, and M. S. Young, “New digital phase meter concept and its application,” Rev. Sci. Instrum., vol. 68, pp. 1894-1901, Apr. 1997.
[17]K. N. Huang, C. F. Huang, Y. C. Li and M. S. Young, “High precision, fast ultrasonic thermometer based on measurement of the speed of sound in air,” Rev. Sci. Instrum., vol. 73, pp. 4022-4027, Nov. 2002.
[18]G. S .K. Wong, and T .F. W. Embleton, “Variation of the speed of sound in air with humidity and temperature,” J. Acoust. Soc. Am., vol. 77, pp. 1710-1712, May 1985.
[19]M. Bramanti, E. A. Salerno, A. Tonazzini, S. Pasini and A. Gray, “An acoustic pyrometer system for tomographic thermal imaging in power plant boilers,” IEEE Trans. Instrum. Meas., vol. 45, pp. 159-167, 1996.
[20]K. D. Wilson and W. T. Dennis, “Acoustic propagation through anisotropic, surface-layer turbulence,” J. Acoust. Soc. Am., vol. 96, pp. 1080-1095, 1994.
[21]W. Y. Tsai, H. C. Chen and T. L. Liao, “High accuracy ultrasonic air temperature measurement using multi-frequency continuous wave,” Sens. Actuator A-Phys., vol. 132, pp. 526-532, 2006.
[22]T. S. Zhan, S. L. Wu and W. Y. Tsai, “Spontaneous and highly accurate ultrasonic temperature measurement system for air conditioner in automobiles,” J. Sci. Ind. Res., vol. 68, pp. 44-51, 2009.
[23]P. H. Saul and M. S. J. Mudd, “A direct digital synthesizer with 100-MHz output capability,” IEEE J. Solid-State Circuit, vol. 23, pp. 819-821, 1988.
[24]J. Tierney, C. Rader and B. Gold, “A digital frequency synthesizer,” IEEE Trans. Audio Electroacoust., vol.19, pp. 48-57, 1971.
[25]L. Cordesses, “Direct digital synthesis: a tool for periodic wave generation (part 1),” Signal Process. Mag. IEEE, vol. 21, pp. 50-54, 2004.
[26]A. B. Dennis, “Environmental effects on the speed of sound,” J. Audio Eng. Soc., vol. 36, pp. 8690-8710, Apr. 1988.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-07-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-07-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw