進階搜尋


下載電子全文  
系統識別號 U0026-0706201215383300
論文名稱(中文) 中國白堊紀竊蛋龍類孵育行為探究
論文名稱(英文) Brooding Behaviors of Cretaceous Oviraptoroid Dinosaurs from China
校院名稱 成功大學
系所名稱(中) 地球科學系碩博士班
系所名稱(英) Department of Earth Sciences
學年度 100
學期 2
出版年 101
研究生(中文) 楊子睿
研究生(英文) Tzu-Ruei Yang
電子信箱 lereage@gmail.com
學號 l46994019
學位類別 碩士
語文別 中文
論文頁數 82頁
口試委員 指導教授-楊耿明
共同指導教授-程延年
口試委員-李亞夫
口試委員-紀文榮
中文關鍵字 竊蛋龍  生殖  孵育  蛋殼 
英文關鍵字 Oviraptor  reproduction  brooding  eggshell 
學科別分類
中文摘要   過去恐龍與鳥之間存疑的親緣關係,因帶羽毛及多種小型獸腳類(theropods)恐龍的發現、和支序分類學方法的採用因而建構的支序圖,大抵證實鳥即恐龍,乃恐龍系譜中的現生成員(然而Feduccia(2012)仍有不同見解)。因此最接近鳥類的傷齒龍類(troodons)與竊蛋龍類(oviraptors)之生殖、孵育的古生態行為研究,對於了解鳥類的生殖系統及行為的演化便顯格外重要。生殖行為可分為:卵孵出前的築巢、孵蛋行為,以及卵孵出後的孵育與護幼行為。過去研究指出,竊蛋龍類可能具備羽毛構造進行保溫孵育之內溫型生理特徵;且針對蒙古戈壁竊蛋龍類標本之保存不完整骨骼與窩蛋的相對位置關係,僅見於現今鳥類;另外比較巢內蛋數目與成體大小之比例,發現非「鳥綱」之獸足類群與現今雄性照應的鳥類相近,進而推斷出現今鳥類的孵育、雄性照應、以及一夫多妻等行為,乃是在恐龍時期便已出現的「先成行為」。
  然而,根據發掘自中國江西省贛州、紅城盆地,白堊系地層挖掘出來的五窩竊蛋龍類窩巢,進行了窩蛋外型量度、描述與觀察,以及切取蛋殼薄片以偏光顯微鏡與掃描式電子顯微鏡做微觀分析;進一步與現生鳥類(鴕鳥)與鱷類(馬來鱷與灣鱷)之蛋殼做一統合比較與分析。此五窩蛋樣本,皆顯示出共同的特徵支持同一假說:所有窩蛋的卵都為成對排列;少為單圈(rim)堆置,多為雙圈;所有長橢圓形蛋的鈍端皆朝內側,銳端朝外側。圈與圈之間有緻密紅色泥岩基質充填,表示雙圈並非同時產出。微觀構造上,現生鳥蛋幾近平滑的表面,與窩蛋標本長條紋飾蛋表面大異其趣;且這些紋飾表現出聚集於鈍端,銳端則缺少紋飾而顯光滑。最後,在掃描式電子顯微鏡的觀察之下,竊蛋龍類蛋殼之薄片與現生鴕鳥蛋之薄片構造亦差異極大。蛋殼於不同部位厚度的變化差異可能指示出恐龍蛋可能之生理構造並無繫帶與氣室存在,亦不表現出鳥類特有之生殖期行為-翻轉蛋;此外根據群集分析窩巢中的蛋,同一窩巢內的蛋可能是由單一母體所產,並非為多雌性個體共巢產卵所致。
  上述之形態證據可衍釋兩種假說:其一,恐龍之羽毛構造,不完全能引申詮釋為絕緣保溫的內溫型生理特徵。僅能說明單靠羽毛此一印痕構造,無法確立恐龍為內溫型動物。其二,現今鳥類的孵蛋、雄性照應、一夫多妻等行為,乃一演化的「後成行為」,並未出現在「鳥綱」以前的非鳥恐龍支序(non-avian dinosaurs)演化系譜中。
英文摘要 Phylogenetic relationship of birds with dinosaurs has recently well-demonstrated by continuous discoveries of feathered dinosaurs from China. In addition to the feathered dinosaurs, recent studies of paired-eggs in pelvic region of an oviraptoroid dinosaur, small theropods and paleognath bird fossils provided further evidences to support the hypothesis that birds are members of the clade of Dinosauria. The understanding of the reproductive behaviors through the study of oological morphology of troodontids or oviraptorians eggs or nests thus are crucial to illustrate the evolutionary history of the reproductive pattern of birds.
Brooding is a peculiar behavior of extant Avian. From biological perspective, the brooding behavior is defined as “maintain constant temperature in nest by direct contact with eggs, sometimes with manipulation”, however, previous researches combined the feathered dinosaur and similar-brooding oviraptoroid fossils to demonstrate brooding had present in Dinosauria. Moreover, comparison of the ratio of clutch-volume to adult-body-mass between Aves and Mesozoic dinosaurs, proposed that the polygamy and paternal-care had been appeared on non-avian theropods. According to the discoveries, paleobiologists came to the conclusion that the brooding, polygamy, paternal-care behaviors of Avian were originated from dinosaurs in Cretaceous. However, our studies on Cretaceous fossil oviraptorids nests from China invalidate the aforementioned hypothesis.
We analyzed five oviraptorids nests excavated from the Cretaceous strata in the Hongcheng Basin, Ganzhou, Jiangxi Province of China. Detailed analysis, measurement of external form of the nests, observation of eggshell thin section through polarization microscope and SEM, and, furthermore, compared the profile structure of the eggshell thin section with that of the extant birds (Ostrich and Gallus), turtles and crocodilians (Tomistoma schlegelli and Crocodylus porosus) demonstrate communal conclusions. All the fossil eggs were laid in pairs and tilted outward. Most of the eggs occur in two “rims”, which are interbedded with matrix, indicating that the rims were not laid en masse. The blunt ends of the long ellipsoid-shape eggs all point inward in the nest. While the surface in sharp end is smooth, the blunt end is characterized by linearituberculate ornamentation, in contrast to the entirely smooth surface of the avian eggshell. Finally, there is a major difference in the accretion characters and layering between the oviraptor and avian eggshells. From cluster analysis through paleoecological perspectives, the eggs in Cretaceous oviraptor’s nest should not be corporately laid by multiple females. Comparison of thickness in different part of oviraptor’s egg reveals possible structure of egg and ecological behaviors. For instance, egg-rotation is common in extant birds, which is beneficial to hatchling; however, the behavior doesn’t exist in Crocodilians due to the lack in chalazae. Detailed comparison of aformentioned analysis implies that oviraptoroid dinosaurs probably hold different incubation and caring behaviors from extant birds.
We propose an alternative hypothesis herein suggesting that the paternal care and brooding behaviors not originated from Mesozoic clade of Dinosauria, which didn’t brood their clutch and show polygamy behaviors, either. The Mesozoic oviraptors dinosaurs adults laid pair eggs each time, arrange them toroidally, buried them in a substrate, and then superpose another rim of eggs. Multi-rim clutch can be also observed in crocodiles and megapode, and both of which do not have brooding behaviors. The structure of egg is alike to crocodile’s, which is lacking in chalazae and air space. Oviraptoroid dinosaurs probably guard their exquisite nests without caring or egg-rotation behaviors, just alike to extant crocodilians which belong to the same clade of Reptiles of Archosauria.
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
第1章 前言 1
1.1 研究目的 1
1.2 問題與爭議 4
第2章 研究方法 10
2.1 標本採集地及其地質 10
2.2 研究標本收藏機構簡稱 12
2.3 標本描述 13
第3章 前人研究 20
3.1 竊蛋龍的發現與命名 20
3.2 恐龍生殖生理學 21
3.3 現生脊椎動物孵育行為 24
第4章 研究議題與方法 28
4.1 從古生物學跨越至化石生物學 28
4.2 研究議題 28
4.3 蛋殼薄片 30
4.4 窩巢觀察 30
4.5 統計分析 31
4.6 系譜重建 43
第5章 蛋殼顯微構造分析 44
5.1 生殖方式的演化 44
5.2 爬行類、鳥類、與恐龍類群之蛋比較 45
5.3 蛋殼的形成與結構分類 47
5.4 蛋殼顯微構造分析與比較 53
5.5 胚胎體位與蛋殼結構 58
第6章 窩巢型態分析 61
6.1 窩蛋排列形態 61
6.2 協同生殖 63
6.3 群集分析 63
第7章 討論 67
7.1 與現生生物學之比較 67
7.2 系譜重新劃定 72
第8章 結論 74
參考文獻 75
參考文獻 Ar, A., Paganell.Cv, Reeves, R. B., Greene, D. G. and Rahn, H., Avian egg - water-vapor conductance, shell thickness, and functional pore area: Condor, v. 76, no. 2, pp. 153-158, 1974.
Bakker, R. T., The dinosaur heresies: new theories unlocking the mystery of the dinosaurs and their extinction, Morrow, New York, 481 p., 1986.
Balkan, M., Karakas, R. and Biricik, M., Changes in eggshell thickness, shell conductance and pore density during incubation in the Peking Duck (Anas platyrhynchos f. dom.): Ornis Fennica, v. 83, no. 3, pp. 117-123, 2006.
Barsbold, R., Osmólska, H., Watabe, M., Currie, P.J., Tsogtbaatar, K., A new Oviraptorosaur (Dinosauria, Theropoda) from Mongolia: the first dinosaur with a pygostyle: Acta Palaeontologica Polonica, v. 45, no. 2, pp. 97–106, 2000.
Blackburn, D. G. and Evans, H. E., Why are there no viviparous birds? American Naturalist, v. 128, no. 2, pp. 165-190, 1986.
Booth, D. T., Regional changes in shell thickness, shell conductance, and pore structure during incubation in eggs of the Mute Swan: Physiological Zoology, v. 62, no. 2, pp. 607-620, 1989.
Brown, J. L., The discovery of helping behavior and a classification of avian communal breeding system, in Brown, J. L. (ed), Helping and communal breeding in birds, Princeton University Press, Princeton, pp. 8-33, 1987.
Buffetaut, E. and Le Loeuff, J., The discovery of dinosaur eggshells in nineteenth-century France. in Carpenter, K., Hirsch, K. F. and Horner, J. R. (eds), Dinosaur eggs and babies, Cambridge University Press, New York, pp. 31-34, 1994.
Carpenter, K., Making an egg, in Capenter, K. (ed), Eggs, nests, and baby dinosaurs : a look at dinosaur reproduction, Indiana University Press, Bloomington, pp. 85-107, 1999.
Calder, W. A., The Kiwi and egg design: Evolution as a package deal: Bioscience, v. 29, no. 8, pp. 461-467, 1979.
Calder, W. A., and King, J. R., Thermal and caloric relations of birds, in D. S. Farner and King, J. R. (eds), Avian Biology, Academic Press, New York, pp. 260-415, 1974.
Cheng, Y. N., Qiang, J. I., Wu, X. C. and Shan, H. Y., Oviraptorosaurian eggs (Dinosauria) with embryonic skeletons discovered for the first time in China: Acta Geologica Sinica - English Edition, v. 82, no. 6, pp. 1089-1094, 2008.
Cheng, Y. N., Wu, X. C. and Ji, Q., Triassic marine reptiles gave birth to live young: Nature, v. 432, no. 7015, pp. 383-386, 2004.
Chiappe, L., The first 85 million years of avian evolution: Nature, v. 379, pp. 212-213, 1995.
Chiappe, L., Downsized dinosaurs: The evolutionary transition to modern birds, Evolution: Education and Outreach, v. 2, pp. 248-256, 2009.
Deeming, D. C., Behaviour patterns during incubation , in D. C. Deeming and M. W. J. Ferguson (eds), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, pp. 277-284. Cambridge University Press, New York, 1991a.
Deeming, D. C., Reasons for the dichotomy in egg turning in birds and reptiles, in D. C. Deeming and M. W. J. Ferguson (eds), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, pp. 307-323. Cambridge University Press, New York, 1991b.
Deeming, D. C. and Thompson, M. B., Gas exchange across reptilian eggshells, in D. C. Deeming and M. W. J. Ferguson (eds), Egg Incubation: Its Effects on Embryonic Development in Birds and Reptiles, pp. 277-284. Cambridge University Press, New York, 1991c.
Dong, Z. M. and Currie, P. J., On the discovery of an oviraptorid skeleton on a nest of eggs at Bayan Mandahu, Inner Mongolia, People's Republic of China: Canadian Journal of Earth Sciences, v. 33, no. 4, pp. 631-636, 1996.
Drent, P., Movement sensitivity in incubating turtle eggs, in Farner, D. S. and King, J. R., Avian Biology, v. 5, Academic Press, New York, pp. 333-420, 1975.
Emlen, S. T., Evolution of cooperative breeding in birds and mammals, in Krebs, J. R. (ed), Behavioral Ecology (3rd ed), Blackwell Scientific Publications, pp. 301-337, 1991.
Erben, H. K. and Münzenburg, H. K., Ultrastrukturen und Mineralisation rezenter und fossiler Eischalen bei Vögeln und Reptilien, Biomineralisation: Forschungsberichte = Biomineralization: Research reports, Bd. 1, Schattaur, Stuttgart, New York, 100 p., 1970.
Ewert, M. A., Embryology of turtles, in Gans, C., Billett, F. and Maderson, P. E. A. (eds) Biology of the Reptilia, v. 14, Development A, John Wiley and Sons, New York, pp. 333-413, 1985
Eycleshymer, A. C., Some observations and experiments on the natural and artificial incubation of the egg of the common fowl: Biological Bulletin, v. 12, pp. 360-374, 1905.
Feduccia, A., The origin and evolution of birds, Yale University Press, New Haven, 480 p.,1999.
Feduccia, A., Riddle of the feathered dragon: hidden birds of China, Yale University Press, New Haven, 368 p., 2012.
Ferguson, M. W. J., The structure and composition of the eggshell and embryonic membranes of Alligator mississippiensis: The Transactions of the Zoological Society of London, v. 36, no. 2, pp. 99-152, 1982.
Ferguson, M. W. J., The reproductive biology and embryology of crocodilians, in Gans, C., Billet, F. and Maderson, P. F. A. (eds) Biology of Reptilia, v. 14, Development A, John Wiley and Sons, New York, pp. 329-491, 1985.
Geist, N. R. and Jones, T. D., Juvenile skeletal structure and the reproductive habits of dinosaurs: Science, v. 272, no. 5262, pp. 712-714, 1996a.
Geist, N. R. and Jones, T. D., Response: dinosaurs and their youth: Science, v. 273, no. 5272, pp. 166-167, 1996b.
Hirsch, K. F. and Packard, M. J., Review of fossil eggs and their shell structure: Scanning Microscopy, v. 1, no. 1, pp. 383-400, 1987.
Hirsch, K. F. and Quinn, B., Eggs and eggshell fragments from the Upper Cretaceous Two Medicine Formation of Montana: Journal of Vertebrate Paleontology, v. 10, no. 4, pp. 491-511, 1990.
Horner, J. R., Egg clutches and embryos of two Hadrosaurian dinosaurs: Journal of Vertebrate Paleontology, v. 19, no. 4, pp. 607-611, 1999.
Horner, J. R., Dinosaur reproduction and parenting: Annual Review of Earth and Planetary Sciences, v. 28, no. 1, pp. 19-45, 2000.
Huxley, T. H., Further evidence of the affinity between the Dinosaurian repriles and birds: Quarterly Journal of the Geological Society, v. 26, pp. 12-31, 1870.
Huxley, T. H., On the animals which are most nearly intermediate between birds and reptiles, Annuals and Megazine of Natural History Series 4, v. 2, pp. 66-75, 1868.
Ji, Q., Currie, P. J., Norell, M. A. and Ji, S.-A., Two feathered dinosaurs from northeastern China: Nature, v. 393, no. 6687, pp. 753-761, 1998.
Ji, Q. and Ji, S., On discovery of the earliest bird fossil in China and the origin of birds: Chinese Geology, v. 10, no. 223, pp. 30-33, 1996.
Jiangxi Bureau of Geology Mineral Resources, Regional geology of Jiangxi province, Geological Publishing House, Beijing, 1984 (in Chinese with English Abstract).
Jones, D. N., Dekker, R. W. R. J., and Roselaar, C. S., The Megapodes Megapodiidae, Oxford University Press, Oxford, 304 p., 1995.
Ma, H. and Zhao, Z., Biomechanical properties of eggshell (II) - two breaking types of the dinosaur eggshells under external pressure: Vertebrata Palasiatica, v. 32, no. 4, pp. 249-257, 1994.
Maclean, S. G., Egg-covering in the Charadrii: Ostrich, v. 45, pp. 167-174, 1974.
Mikhailov, K. E., Classification of fossil eggshells of amniotic vertebrates: Acta Palaeontologica Polonica, v. 36, no. 2, pp. 193-238, 1991.
Mikhailov, K. E., Fossil and recent eggshell in amniotic vertebrates: fine structure, comparative morphology and classification, Special papers in palaeontology, no. 56 Palaeontological Association, London, pp. 122, 1997.
New, D. A. T., A critical period for the turning of hen’s eggs: Journal of Embryology and Experimental Morphology, v. 5, pp. 293-299, 1957.
Norell, M. A. and Clark, J. M., Dinosaurs and their youth: Science, v. 273, no. 5272, pp. 165-168, 1996.
Norell, M. A., Clark, J. M., Chiappe, L. M. and Dashzeveg, D., A nesting dinosaur: Nature, v. 378, no. 6559, pp. 774-776, 1995.
Norell, M. A., Clark, J. M., Demberelyin, D., Rhinchen, B., Chiappe, L. M., Davidson, A. R., McKenna, M. C., Altangerel, P. and Novacek, M. J., A theropod dinosaur embryo and the affinities of the flaming cliffs dinosaur eggs: Science, v. 266, no. 5186, pp. 779-782, 1994.
Norell, M. A., Makovicky, P. and Clark, J. M., A velociraptor wishbone: Nature, v. 389, no. 6650, p.447, 1997.
Osborn, H. F., Kaisen, P. C., Olsen, G. and Central Asiatic, E., Three new Theropoda, Protoceratops zone, central Mongolia: American Museum novitates, v. 144, pp. 1-12, 1924.
Palmer, B. D. and Guillette, L. J., Alligators provide evidence for the evolution of an archosaurian mode of oviparity: Biology of Reproduction, v. 46, no. 1, pp. 39-47, 1992.
Paul, G. S., Dinosaurs of the Air: The evolution and loss of flight in dinosaurs and birds, Johns Hopkins University Press, Baltimore, 472 p., 2002.
Reisz, R. R., Evans, D. C., Sues, H.-D. and Scott, D., Embryonic skeletal anatomy of the sauropodomorph dinosaur Massospondylus from the Lower Jurassic of South Africa: Journal of Vertebrate Paleontology, v. 30, no. 6, pp. 1653 - 1665, 2010.
Reisz, R. R., Scott, D., Sues, H.-D., Evans, D. C. and Raath, M. A., Embryos of an Early Jurassic Prosauropod Dinosaur and Their Evolutionary Significance: Science, v. 309, no. 5735, pp. 761-764, 2005.
Rokitka, M. A. and Rahn, H., Regional differences in shell conductance and pore density of avian eggs: Respiration Physiology, v. 68, no. 3, pp. 371-376, 1987.
Sabath, K., Upper Cretaceous amniotic eggs from the Gobi desert: Acta Palaeontologica Polonica, v. 36, no. 2, pp. 151-192, 1991.
Sander, P. M., A fossil reptile embryo from the middle Triassic of the Alps: Science, v. 239, no. 4841, pp. 780-783, 1988.
Sato, T., Cheng, Y.-N., Wu, X.-C., Zelenitsky, D. K. and Hsiao, Y.-F., A pair of shelled eggs inside a female dinosaur: Science, v. 308, no. 5720, p. 375, 2005.
Steadman, D., Extinction and Biogeography in Tropical Pacific Birds. University of Chicago Press, Chicago, 480 p., 2006.
Taylor, M. A., Marine reptiles: Lifestyle of plesiosaurs: Nature, v. 319, no. 6050, p. 179, 1986.
Varricchio, D. J., Horner, J. R. and Jackson, F. D., Embryos and eggs for the Cretaceous theropod dinosaur Troodon formosus: Journal of Vertebrate Paleontology, v. 22, no. 3, pp. 564-576, 2002.
Varricchio, D. J., Jackson, F., Borkowski, J. J. and Horner, J. R., Nest and egg clutches of the dinosaur Troodon formosus and the evolution of avian reproductive traits: Nature, v. 385, no. 6613, pp. 247-250, 1997.
Varricchio, D. J., Moore, J. R., Erickson, G. M., Norell, M. A., Jackson, F. D. and Borkowski, J. J., Avian paternal care had dinosaur origin: Science, v. 322, no. 5909, pp. 1826-1828, 2008.
Vehrencamp, S. L., Evolutionary routes to joint-female nesting in birds: Behavioral Ecology, v. 11, pp. 334-344, 2000.
Wang, C. Y. and Zheng, S. N., Observation of the mode of occurence of fossil reptilian eggs from Shantung and Kwandung: Vertebrata Palasiatica, v. 7, no. 4, pp. 368-369, 1963.
Weishampel, D. B., Dodson, P. and Osmólska, H., The Dinosauria, University of California Press, Berkeley, 880 p., 2004.
Wesolowski, T., On the origin of parental care and the early evolution of male and female parental roles in birds: The American Naturalist, v. 143, no. 1, pp. 39-58, 1994.
Wesolowski, T., The origin of parental care in birds: a reassessment: Behavioral Ecology, v. 15, no. 3, pp. 520-523, 2004.
Xu, X., Zhou, Z. and Wang, X., The smallest known non-avian theropod dinosaur: Nature, v. 408, no. 6813, pp. 705-708, 2000.
Xu, X., Zhou, Z., Wang, X., Kuang, X., Zhang, F. and Du, X., Four-winged dinosaurs from China: Nature, v. 421, no. 6921, pp. 335-340, 2003.
Yamashina, M., A sociable breeding habit among timaliinae birds: Congres Ornithologique International, pp. 453-456, 1938.
Young, C.-c., Fossile eggs from Nanhsiung, Kwangtung and Kanchou, Kiangsi: Vertebrata Palasiatica, v. 9, no. 2, pp. 141-189, 1965.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2015-08-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-08-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw