進階搜尋


下載電子全文  
系統識別號 U0026-0702201816413500
論文名稱(中文) 偶極化發生時磁層尾之電子拋射角分佈變化和地球徑向距離的關係
論文名稱(英文) Radial dependence of the variations for electron pitch angle distributions at the dipolarization sites in the tailside
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 106
學期 1
出版年 106
研究生(中文) 郎卓仁
研究生(英文) Zhuo-Ren Lang
學號 LA6041103
學位類別 碩士
語文別 中文
論文頁數 128頁
口試委員 指導教授-陳炳志
指導教授-汪愷悌
口試委員-林慶輝
中文關鍵字 電子拋射角分佈特徵  絕熱費米加速機制  貝他加速機制  偶極化 
英文關鍵字 dipolarization  anisotropy 
學科別分類
中文摘要 由於現今太空科技的發展,以及太空觀測儀器的進步,使得我們可以更容易得去探討有關於太空的物理現象以及相關機制,也因於人們更依賴太空科技所帶來的便利性,各國所投入發展太空科技的金錢日益漸增,為了避免太空天氣的危害導致經濟龐大損失,太空天氣的研究將更加被重視。本論文分析了當太空天氣造成磁層擾動時,磁尾處偶極化區之電子拋射角分佈特徵的改變,並詳加探討。
有關於電子拋射角的相關研究,目前由文獻可了解到絕熱費米加速機制可造成電子拋射角分佈演進成雪茄型的分佈,以及貝他加速機制可造成電子拋射角分佈演進成鬆餅型的分佈,但是尚還有些情況還需要其他的機制才有可能的去解釋所有觀測到電子拋射角特徵,往後還需要研究人員從此去深入探討。
本論文使用西密斯衛星於2008年至2011年間的探測資料,其中包含了2008年至2009年間的42個偶極化事件資料(Wang et al., 2014),利用統計分析的方式分別去探討磁層擾動發生時,電子拋射角分佈特徵之演進,電子拋射角分佈變化特徵與離地心之徑向距離之相關性,電子拋射角分佈變化與場線長度之相關性,電子拋射角分佈變化與偶極化角變化之相關性。
英文摘要 In this thesis, radial dependence of variations in anisotropies for pitch angle distributions (PAD) of electrons at the dipolarization sites in the Earth’s tailside is investigated through statistical analysis on observations of THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission from the year of 2008 to 2011. The data of electrons with energy ranges from a few eV to MeV detected by the charged particle instruments on THEMIS probes, the electrostatic analyzer (ESA) and the solid state telescope (SST), are adopted. The primary focus is on how the anisotropy ratio between the dipolarization period and before the dipolarization starts distributes with L-shells and field line lengths the THEMIS probes located. The results show that a specific dependence feature does exist for the energy range around a few keV and possible theoretical interpretations are discussed.
論文目次 摘要 I
Abstract II
致謝 VI
圖目錄 IX
表目錄 XVII
第一章 緒論 1
1.1 背景介紹 1
1.2 研究動機 2
1.3 絕熱加速之物理機制與絕熱不變量之關係 4
第二章 西蜜斯衛星任務介紹 7
2.1 探測器的選擇 7
2.2 任務簡介 7
2.3 儀器介紹 9
第三章 資料處理與方法 16
3.1 選擇偶極化事件的標準 16
3.2 電子的拋射角分佈特徵 18
第四章 資料分析與討論 21
4.1 2008年至2011年所選擇的偶極化事件 21
4.2電子拋射角分佈特徵 26
4.3偶極化處電子拋射角分佈變化與徑向距離之相關性 27
4.4偶極化處電子拋射角分佈變化與磁力線長度之相關性 33
4.5 電子拋射角ratio與偶極化角變化之關係 39
第五章 結論與展望 43
參考文獻 44
附錄A 46
No.45. 事件各能量區間之電子拋射角分佈變化(由左至右相對應時間點為t1、t2、t3) 46
No.56. 事件各能量區間之電子拋射角分佈變化(由左至右相對應時間點為t1、t2、t3) 50
附錄B(ratio與L-shell及Field line length各能量區間圖) 54
(a)(b)(c)(d)ratio分析、(e)(f)(g)(h)中位數分析 54
附錄C(ratio與L-shell及Field line length各能量區間圖) 92
(a)(b)(c)(d)ratio分析、(e)(f)(g)(h)中位數分析 92
參考文獻 [1]Angelopoulos, V., Kennel, C., Coroniti, F., Pellat, R., Kivelson, M., & Walker, R. et al. (1994). Statistical characteristics of bursty bulk flow events. Journal Of Geophysical Research, 99(A11), 21257.
[2]Baumjohann, W., Hesse, M., Kokubun, S., Mukai, T., Nagai, T. and Petrukovich, A. (1999). Substorm dipolarization and recovery. Journal of Geophysical Research: Space Physics, 104(A11), pp.24995-25000.
[3]Earth's Magnetosphere and Plasmasheet. (2017). NASA. Retrieved 23 August 2017, from https://www.nasa.gov/mission_pages/sunearth/science/magnetosphere2.html
[4]Fu, H., Khotyaintsev, Y., Vaivads, A., André, M., Sergeev, V., & Huang, S. et al. (2012). Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview. Journal Of Geophysical Research: Space Physics, 117(A12), n/a-n/a.
[5]Grigorenko, E., Koleva, R., & Sauvaud, J. (2012). On the problem of Plasma Sheet Boundary Layer identification from plasma moments in Earth's magnetotail. Annales Geophysicae, 30(9), 1331-1343.
[6]Maus, S., & MacMillan, S. (2005). 10th generation international geomagnetic reference field. Eos, Transactions American Geophysical Union, 86(16), 159-159.
[7]Runov, A., Angelopoulos, V., Gabrielse, C., Zhou, X., Turner, D., & Plaschke, F. (2013). Electron fluxes and pitch-angle distributions at dipolarization fronts: THEMIS multipoint observations. Journal Of Geophysical Research: Space Physics, 118(2), 744-755.
[8]Sigsbee, K., Slavin, J., Lepping, R., Szabo, A., Øieroset, M., & Kaiser, M. et al. (2005). Statistical and superposed epoch study of dipolarization events using data from Wind perigee passes. Annales Geophysicae, 23(3), 831-851.
[9]Smets, R., Delcourt, D., Sauvaud, J., & Koperski, P. (1999). Electron pitch angle distributions following the dipolarization phase of a substorm: Interball-Tail observations and modeling. Journal Of Geophysical Research: Space Physics, 104(A7), 14571-14581.
[10]THEMIS Spacecraft and Instruments. (2017). NASA. Retrieved 23 August 2017, from https://www.nasa.gov/mission_pages/themis/spacecraft/index.html
[11]Wang, K., Lin, C., Wang, L., Hada, T., Nishimura, Y., Turner, D., & Angelopoulos, V. (2014). Pitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observations. Journal Of Geophysical Research: Space Physics, 119(12), 9747-9760.
[12]Wu, P., Fritz, T., Larvaud, B., & Lucek, E. (2006). Substorm associated magnetotail energetic electrons pitch angle evolutions and flow reversals: Cluster observation. Geophysical Research Letters, 33(17).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw