進階搜尋


下載電子全文  
系統識別號 U0026-0702201713290500
論文名稱(中文) 使用頻率偵測器之寬頻鎖定雙迴路類比式延遲鎖定迴路
論文名稱(英文) A Dual-Loop Wide-Range Analog Delay Lock Loop with a Frequency Detector
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 105
學期 1
出版年 106
研究生(中文) 徐毓昕
研究生(英文) Yu-Sin Syu
學號 N26031576
學位類別 碩士
語文別 英文
論文頁數 81頁
口試委員 指導教授-劉濱達
指導教授-魏嘉玲
口試委員-張順志
口試委員-陳春僥
口試委員-鄭光偉
中文關鍵字 延遲鎖定迴路  雙迴路  寬頻 
英文關鍵字 Delay lock loop  dual loop,  wide range 
學科別分類
中文摘要 本論文提出一個應用在寬頻操作頻率的延遲鎖定迴路,具有良好的抖動性能。本架構使用頻率偵測器來自動選擇電荷幫浦的電流值,並改善電壓控制延遲線的非線性現象,以保持抖動性能和鎖定時間。此系統使用雙迴路架構,其細調迴路目的使相位偵測器的死帶縮小,以提升抖動效能。
此延遲鎖定迴路採用聯華電子公司0.18 um一層多晶矽六層金屬導線互補式金屬氧化物半導體製程實現,晶片面積為0.14 mm2。由佈局模擬結果顯示,可操作之頻率範圍為20 MHz至1 GHz。在電源電壓為 1.8 V和操作頻率為1 GHz的量測條件下,峰對峰值抖動為23 ps,功率消耗為20.9 mW。
英文摘要 This thesis proposes a delay lock loop that operates over a wide frequency range and exhibits good jitter performance. The adopted frequency detector determines the current for the charge pump, which can improve the nonlinear delay gain of the voltage-controlled delay line to maintain the jitter performance and the locking time. Besides, a dual loop is applied in the system to minimize the dead zone of the phase detector, increasing the jitter performance.
The proposed DLL has been fabricated by UMC 0.18-µm 1P6M CMOS technology, and the core area of the chip is 0.14 mm2. Simulation results show that the proposed DLL can achieve the frequency range from 20 MHz to 1 GHz at 1.8 V supply voltage. When the operation frequency is 1 GHz, the peak-to-peak jitter is 21 ps and the power consumption is 20.9 mW.
論文目次 Abstract (Chinese) i
Abstract (English) iii
Acknowledgement v
Table of Contents vii
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of the Thesis 2
Chapter 2 Overview of DLL 3
2.1 Basic Concept of DLL 3
2.1.1 Phase Lock Loop 3
2.1.2 Conventional Analog DLL 4
2.2 Relative Paper of DLL 7
2.2.1 Replica Delay Line 7
2.2.2 Dual Loop 10
2.2.3 Scaling Circuit 12
Chapter 3 Architecture of the Proposed Circuit 14
3.1 The Proposed Architecture of the DLL 14
3.2 Start-up Circuit 16
3.3 Phase Detector 18
3.4 Charge Pump 20
3.5 Voltage-Controlled Delay Line 25
3.6 Frequency Detector 29
3.7 Time Amplifier 31
3.8 Lock Detector 36
Chapter 4 Simulation and Experimental Results 38
4.1 Layout and Simulation Results 38
4.1.1 Layout 38
4.1.2 Simulation Results 41
4.1.3 PVT Variations 48
4.2 Measurement Results and Discussion 63
4.2.1 Measurement Results 63
4.2.2 Discussion 72
4.3 Comparison 74
Chapter 5 Conclusion 75
5.1 Conclusion 75
5.2 Future Work 76
References………………………………………………………………………...............77
Biography………………………………………………………………………...............81
參考文獻 [1] G. Chien and P. R. Gray, “A 900-MHz local oscillator using a DLL-based frequency multiplier technique for PCS applications,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1996–1999, Dec. 2000.
[2] Y. Liu, Y. Wang, S. Jia, and X. Zhang, “180.5 Mbps–8 Gbps DLL-based clock and data recovery circuit with low jitter performance,” in Proc. IEEE Int. Symp. Circuits Syst., May 2015, pp. 1394–1397.
[3] C.-N. Chuang and S.-I. Liu, “A 3–8 GHz delay-locked loop with cycle jitter calibration,” IEEE Trans Circuits Syst. II, Exp. Briefs, vol. 55, no. 11, pp.1094–1098, Nov. 2008.
[4] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723–1732, Nov. 1996.
[5] R.-J. Yang and S.-I. Liu, “A 2.5 GHz all-digital delay-locked loop in 0.13 m CMOS technology, ” IEEE J. Solid-State Circuits, vol. 42, no. 11, pp. 2338–2347, Nov. 2007.
[6] H.-H. Chang, J.-W. Lin, C.-Y. Yang, and S.-I. Liu, “A wide-range delay-locked loop with a fixed latency of one clock cycle,” IEEE J. Solid-State Circuits, vol. 37, no. 8, pp.1021–1027, Aug. 2002.
[7] K.-H. Cheng and Y.-L. Lo, “A fast-lock wide-range delay-locked loop using frequency-range selector for multiphase clock generator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 7, pp. 561–565, July 2007.
[8] Y. Moon, J. Choi, K. Lee, D.-K. Jeong, and M.-K. Kim, “An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 377–384, Mar. 2000.
[9] Y.-L. Lo, P.-Y. Chou, H.-H. Cheng, S.-F. Tsai, and W.-B. Yang, “An all-digital DLL with dual-loop control for multiphase clock generator,” in Proc Int. Symp. Integr. Circuits, Dec. 2011, pp. 388–391.
[10] A. Rossi and G. Fucili, “Nonredundant successive approximation register for A/D converters,” Electron. Lett., vol. 32, no. 12, pp. 1055–1057, June 1996.
[11] G.-K. Dehng, J.-M. Hsu, C.-Y. Yang, and S.-I. Liu, “Clock-deskew buffer using a SAR-controlled delay-locked loop,” IEEE J. Solid-State Circuits, vol. 35, no. 8, pp. 1128–1136, Aug. 2000.
[12] C.-N. Chuang and S.-I. Liu, “A 20-MHz to 3-GHz wide-range multiphase delay-locked loop,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 11, pp. 850–852, Nov. 2009.
[13] J.-W. Park, N.-S. Kim, R.-I. Jeong, D.-S. Won, and R.-Y. Choi, “High performance two-stage charge-pump for spur reduction in CMOS PLL,” in Proc Int. Multi-Conf. Syst., Signals Devices, Feb. 2014, pp. 1–5.
[14] 劉深淵,楊清淵, “鎖相迴路”,滄海書局, 2008.
[15] Y.-H. Tu, K.-H. Cheng, H.-Y. Wei, and H.-Y. Huang, “A low jitter delay-locked-loop applied for DDR4,” in Proc. IEEE Int. Symp. Des. Diagnostics Electron. Circuits Syst., Apr. 2013, pp. 98–101.
[16] W. Rhee, “Design of high-performance CMOS charge pumps in phase-locked loops,” in Proc IEEE Int. Symp. Circuits Syst., Aug. 2002, pp. 545–548.
[17] M. Lee and A. A. Abidi, “A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 769–777, Apr. 2008.
[18] H.-J. Kwon, J.-S. Lee, J.-Y. Sim, and H.-J. Park, “A high-gain wide-input-range time amplifier with an open-loop architecture and a gain equal to current bias ratio,” in Proc IEEE Asian Solid-State Circuits Conf., Nov. 2011, pp. 325–328.
[19] S. Han and J. Kim, “A high-resolution wide-range dual-loop digital delay-locked loop using a hybrid search algorithm,” in Proc IEEE Asian Solid-State Circuits Conf., Nov. 2012, pp. 293–296.
[20] Y.-H. Moon, I.-S. Kong, Y.-S. Ryu, and J.-K. Kang, “A 2.2-mW 20–135-MHz false-lock-free DLL for display interface in 0.15-μm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 8, pp. 554–558, Aug. 2014.
[21] K. Ryu, J. Jung, D.-H. Jung, J.-H. Kim, and S.-O. Jung, “High-speed, low-power, and highly reliable frequency multiplier for DLL-based clock generator,” IEEE Trans. Very Large Scale Integr. Syst., vol. 24, no. 4, pp. 1484–1491, Apr. 2016.
[22] W.-M. Lin, K.-F Teng, and S.-I. Liu, “A delay-locked loop with digital background calibration” in Proc IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 317–320.
[23] Z. Li, S. Zheng and N. Hou, “Design of a high performance CMOS charge pump for phase-locked,” in Proc Asia-Pacific Conf. Commun., Oct. 2009, pp. 209–212.
[24] C.-C. Chen and S.-I Liu, “An infinite phase shift delay-locked loop with voltage-controlled sawtooth delay line,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2413–2420, Nov. 2008.
[25] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
[26] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiley, 1997.
[27] Alldatasheet.com, Electronic Components Datasheet Search. [Online]. Available: http://www.alldatasheet.com/view.jsp?Searchword=LM317
[28] F. Mu and C. Svensson, “Pulsewidth control loop in high-speed CMOS clock buffers,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 134–141, Feb. 2000.
[29] A. M. Abas, A. Bystrov, D. J. Kinniment, O. V. Maevsky, G. Russell, and A.V. Yakovlev, “Time difference amplifier,” Electron. Lett., vol. 38, no. 23, pp. 1437–1438, Nov. 2002.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-02-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw