進階搜尋


下載電子全文  
系統識別號 U0026-0702201417470200
論文名稱(中文) 蘭嶼豬傷口陣列模式之建立
論文名稱(英文) Establishment of wound array model in Lanyu pigs
校院名稱 成功大學
系所名稱(中) 生物科技研究所
系所名稱(英) Institute of Biotechnology
學年度 102
學期 1
出版年 103
研究生(中文) 王鈺斌
研究生(英文) Yu-Bin Wang
學號 L66001048
學位類別 碩士
語文別 中文
論文頁數 59頁
口試委員 指導教授-黃玲惠
口試委員-謝式洲
口試委員-潘信誠
中文關鍵字 傷口癒合  動物模式  蘭嶼豬  雷射都卜勒 
英文關鍵字 Wound healing  Animal model  Lanyu pig  Laser Doppler 
學科別分類
中文摘要 在皮膚傷口癒合的研究中,大致可分為細胞體外試驗和動物體內試驗兩大類,其中又以動物試驗較能模擬人類傷口癒合之狀況,因此,建立理想且穩定的動物傷口模式更是不可或缺的部分。在本研究中,以建立蘭嶼豬多重傷口開創之動物模式為目的,希望以此多重傷口作為陣列模式,提供簡易且快速地藥物篩選平台。試驗設計以證實蘭嶼豬動物模式之可行性,以及規劃具有快速且高通量篩選特性之傷口陣列為主,結合各種癒合參數進行評估。試驗結果顯示,以手術刀與電動取皮機開創不同深度之傷口分別可控制傷口大小在7.5%以及16.1%之誤差之內,在位置效應上,不同陣列位置對組織學結構以及傷口癒合與收縮之作用皆無顯著差異(p>0.05)。結合癒合參數之評估,部分深度傷口與全深度傷口在第7和9天傷口癒合上有顯著差異(p<0.005)且在第13天傷口收縮上有極顯著差異(p<0.001)。另外,也應用雷射都卜勒血流影像儀分析不同深度之傷口血流訊號變化趨勢。由實驗結果顯示,傷口陣列模式具有高度穩定性且不受陣列位置效應所影響,並且可結合各項參數進行評估,藉此也證實蘭嶼豬背側皮膚作為多重傷口的陣列模式之可行性。
英文摘要 Wound repair is a complex biologic process which is influenced by many factors and compounds. Both in vitro and in vivo models are widely-used in wound healing research. The ideal animal model should reflect human wound healing problems, so it is very important for us to establish the stable and consistent animal models for wound healing studies.
The purpose of this study is to establish the wound array model in Lanyu pigs, and use the wound array model as screening platform for drug therapy. In wound creating, the scalpel and dermatome are used to create full-thickness wounds and partial-thickness wounds. The result showed that wound size standard deviation of each creating method is 100%±7.5% and 100%±16.1%. And there is no significant site effect in pig dorsal skin by histological feature, wound closure and wound contraction parameters (p>0.05). Then, we use these wound healing parameters to analyze the difference between partial- and full- thickness wounds. There were significant differences in wound closure in day 7 and day 9 (p<0.005) and wound contraction in day 13 (p<0.001). In addition, we also use Laser Doppler Imager to analyze the blood flow signal during wound healing. Therefore, we suggest that the wound array model in Lanyu pigs which can combine many parameters to estimate for healing quality is a good platform for screening drug therapy.
論文目次 中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
第一章 研究背景與目的1
1.1 皮膚結構與生理功能1
1.2 皮膚傷口癒合研究之概述4
1.2.1 皮膚傷口癒合之過程4
1.2.2 影響皮膚傷口癒合之因素10
1.2.3 生物體內外傷口癒合之研究11
1.3 動物模式於皮膚傷口癒合研究之概述11
1.3.1 常見動物模式之比較11
1.3.2 小型豬於傷口癒合研究之適用性13
1.4 傷口模式在傷口癒合研究之概述14
1.4.1 急性傷口模式15
1.4.2 慢性傷口模式16
1.4.3 癒合能力受損模式16
1.5 研究動機與目的17
第二章 研究方法與步驟18
2.1 實驗設計18
2.2 實驗藥品19
2.3 實驗儀器與材料20
2.4 實驗動物21
2.5 實驗方法21
2.5.1 豬隻保定與麻醉21
2.5.2 皮膚面積增長之觀測22
2.5.3 部分深度傷口與全深度傷口之開創22
2.5.4 手術後傷口之護理23
2.5.5 傷口評估24
2.5.6 雷射都卜勒血流影像儀於傷口癒合之應用25
2.5.7 皮膚傷口組織之採樣26
2.5.8 蘇木紫–伊紅染色法 (Hematoxylin and eosin stain)26
2.5.9 苦味酸-天狼星紅染色法 (Picro-sirius red stain)27
2.5.10 Masson氏三色染色法 (Masson’s trichrome stain)29
2.5.11 Verhoeff氏染色法 (Verhoeff-Van Gieson Elastin Stain)31
第三章 研究結果34
3.1 蘭嶼豬正常皮膚之探討34
3.1.1 蘭嶼豬皮膚之組織學結構34
3.1.2 蘭嶼豬皮膚體表面積之探討38
3.1.3 皮膚面積增長之變化40
3.2 傷口陣列模式之建立41
3.2.1 傷口陣列之規劃41
3.2.2 部分深度傷口與全深度傷口模式42
3.2.3 傷口癒合參數之建立44
3.2.4 位置對傷口癒合之影響52
第四章 討論54
第五章 參考文獻58

表目錄
表1、試驗動物與人類皮膚結構之比較12
表2、傷口模式之類別 14
表3、不同月齡蘭嶼豬背側皮膚之厚度38
表4、不同月齡之蘭嶼豬背側面積39
表5、組織化學染色原理與特性50
表6、蘭嶼豬背側皮膚與人類皮膚之比較54


圖目錄
圖1、皮膚構造剖面圖 1
圖2、表皮層組織學剖面圖2
圖3、真皮層組織學剖面圖3
圖4、傷口癒合之過程 5
圖5、傷口癒合之發炎期7
圖6、傷口癒合之增生期9
圖7、急性傷口模式之種類15
圖8、實驗設計流程圖 18
圖9、蘭嶼豬皮膚刺青手術22
圖10、蘭嶼豬皮膚結構圖34
圖11、蘭嶼豬背側不同部位之皮膚36
圖12、蘭嶼豬背側不同部位之皮膚厚度37
圖13、蘭嶼豬背側長寬之量測38
圖14、試驗期間皮膚面積增長之變化40
圖15、2.5 cm矩形傷口陣列41
圖16、部分深度傷口與全深度傷口開創模式 42
圖17、蘭嶼豬傷口外觀與定義44
圖18、部分深度傷口與全深度傷口之比較46
圖19、傷口癒合過程之血流影像圖48
圖20、部分深度與全深度傷口之血流訊號比值49
圖21、組織化學染色分析51
圖22、蘭嶼豬背側部位52
圖23、蘭嶼豬不同部位之癒合參數比較53

參考文獻 Berry, D. P. (1998). Human wound contraction collagen organization, fibroblasts, and myofibroblasts. Plast Reconstr Surg, 102, 124-130.
Brancato, S. K., & Albina, J. E. (2011). Wound macrophages as key regulators of repair: origin, phenotype, and function. Am J Pathol, 178(1), 19-25.
Broughton, G., 2nd, Janis, J. E., & Attinger, C. E. (2006). The basic science of wound healing. Plast Reconstr Surg, 117(7 Suppl), 12S-34S.
Chang, J.-P. (2010). Left atrial enlargement induced by pure mitral regurgitation: time frame in a new swine model. Eur Surg Res, 45(2), 98-104.
Chih-Hung Chang, & Kuo., T.-F. (2006). Tissue engineering-based cartilage repair with allogenous chondrocytes and gelatin-chondroitin-hyaluronan tri-copolymer scaffold: a porcine model assessed at 18, 24, and 36 weeks. Biomaterials, 27(9), 1876-1888.
Davidson, J. M. (1998). Animal models for wound repair. Arch Dermatol Res, 290, S1-S11.
Diegelmann, R. F., & Evans, M. C. (2004). WOUND HEALING: AN OVERVIEW OF ACUTE, FIBROTIC AND DELAYED HEALING. Frontiers in Bioscience, 283-289.
Dorsett-Martin, W. A. (2004). Rat models of skin wound healing: A review. WOUND REP REG, 12, 591-599.
Ehrlich, H. P. (1988). Wound closure: evidence of cooperation between fibroblasts and collagen matrix. Eye (Lond), 2 ( Pt 2), 149-157.
Essex, T. J., & Byrne, P. O. (1991). A Laser Doppler Scanner for Imaging Blood Flow in Skin. J Biomed Eng, 13(3), 189-194.
Finn Gottrup. (2000). Models for use in wound healing research : a survey focusing on in vitro and in vivo adult soft tissue. 8, 83-96.
Gantwerker, E. A., & Hom, D. B. (2012). Skin: histology and physiology of wound healing. Clin Plast Surg, 39(1), 85-97.
Guo, S., & Dipietro, L. A. (2010). Factors affecting wound healing. J Dent Res, 89(3), 219-229.
Gurtner, G. C. (2008). Wound repair and regeneration. Nature, 453(7193), 314-321.
Hanna, J. R., & Giacopelli, J. A. (1997). A Review of Wound Healing and Wound Dressing Products. J Foot Ankle Surg, 36, 2-14.
Kuo, Y.-R., Chen, C.-C., Shih, H.-S., Goto, S., Huang, C.-W., Wang, C.-T., . . . Wei, F.-C. (2011). Prolongation of Composite Tissue Allotransplant Survival by Treatment with Bone Marrow Mesenchymal Stem Cells Is Correlated with T-Cell Regulation in a Swine Hind-Limb Model. Plast Reconstr Surg, 127(2), 569-579.
Mahdavian Delavary, B. (2011). Macrophages in skin injury and repair. Immunobiology, 216(7), 753-762.
Park, J. E., & Barbul, A. (2004). Understanding the role of immune regulation in wound healing. The American Journal of Surgery, 187(5), S11-S16.
Schafer, M., & Werner, S. (2008). Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol, 9(8), 628-638.
Schultz, G. S., & Wysocki, A. (2009). Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen, 17(2), 153-162.
Singer, A. J. (2003). Development of a Porcine Excisional Wound Model. Academic Emergency Medicine, 10(10), 1029-1033.
Singer, A. J., & Clark, R. A. F. (1999). Cutaneous wound healing. The New England Journal of Medicine, Volume 341, 738-746.
Sullivan, T. P. (2001). The pig as a model for human wound healing. WOUND REP REG, 9(2), 66-76.
Swindle, M. M. (2012). Swine as models in biomedical research and toxicology testing. Vet Pathol, 49(2), 344-356.
Tonnesen, M. G., Feng, X., & Clark, R. A. F. (2000). Angiogenesis in Wound Healing. Journal of Investigative Dermatology Symposium Proceeding, 5, 40-46.
Wang, J. F. (2001). The Pig as a Model for Excisional Skin Wound Healing: Characterization of the Molecular and Cellular Biology, and Bacteriology of the Healing Process. Comparative Medicine, 51(4), 341-348.
Wong, V. W. (2011). Surgical approaches to create murine models of human wound healing. J Biomed Biotechnol, 2011, 969618.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-02-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-02-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw