進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0610201907114300
論文名稱(中文) 穿戴式裝置業者如何在保護消費者隱私與分享用戶資料間取得平衡
論文名稱(英文) Balance between Privacy Protecting and Sharing User Data of Wearable Devices
校院名稱 成功大學
系所名稱(中) 電信管理研究所
系所名稱(英) Institute of Telecommunications and Management
學年度 106
學期 2
出版年 107
研究生(中文) 許榕舫
研究生(英文) Jung-Fang Hsu
學號 R96051052
學位類別 碩士
語文別 英文
論文頁數 99頁
口試委員 指導教授-黃光渠
口試委員-黃郁雯
口試委員-程法彰
中文關鍵字 穿戴式裝置  隱私計算  揭露意圖  國際隱私規範 
英文關鍵字 Wearable device  Privacy calculus  Intention to disclose  International privacy regulation 
學科別分類
中文摘要 諸如智慧手環及智慧手錶等穿戴式裝置由於消費者每天配戴用以紀錄健康資訊而逐漸成為重要的健康監測器。穿戴式裝置業者由於蒐集了多種消費者個人資訊而得以提供消費者客製化的服務。然而,消費者的隱私可能會被侵犯因為他們不知如何關閉或限制穿戴式裝置業者對個人資訊的存取權限,因此,消費者感知到的利益是否大於他們感知到的隱私風險是本研究要探討的主要議題。

本研究首先採用文獻分析法來了解GDPR以及 APEC隱私架構會對穿戴式裝置業者處理消費者個人資訊產生何種影響,同時藉由探討小米、Garmin、Fitbit以及Apple的隱私政策來了解他們如何處理消費者個人資訊。最後,本研究將發放問卷來了解消費者願意揭露個人資訊的主因為何?台灣和國外的消費者是否有不一樣的觀點?

本研究的結論如下:國際隱私規範確實是會對穿戴式裝置業者產生影響,業者們也表示他們會與合作廠商及第三方業者在合約上做更多的確認及調整以避免受罰。從消費者的角度來說,消費者並不會太擔心他們的個人資訊被蒐集多少,他們更在乎的是可以得到多少有價值的客製化服務。因此,本研究建議業者們應該要加強消費者可以感知到的利益以增加消費者揭露個人資訊的動機,在制定隱私政策時可以參考一些標竿企業的隱私政策並適時的加入更符合各公司的條款以作為特殊條款。
英文摘要 Wearable devices such as smart band and smart watch have taken an important role as a health monitor since customers wear it every day and record their health information. Wearable operators are able to provide personalized services in return since they have collected variety kinds of customers’ personal information. However, operators are also able to access the information customers may not want to disclose since customers do not know how to shut down operators’ access right, this may lead to some privacy violence. In short, do the benefit customers perceived exceed the privacy risk they perceived? This is the issue that this study wants to investigate.
This study adopts Documentary Analysis to understand how GDPR and APEC Privacy Framework are affecting wearable devices operators processing customers’ personal information. Privacy policy from Xiaomi, Garmin, Fitbit and Apple are viewed as well, in order to know how they deal with customers’ personal information. Moreover, questionnaires are issued to comprehend what is the main purpose for customer to disclose personal information and what is the differences between Taiwan and foreign users.
The conclusions of our investigation are mentioned as follows. International privacy regulations do have affection toward wearable device operators. The operators state that they have to make more confirmations and adjustments to the operating procedures and contracts with cooperative companies or third parties to avoid penalties. As from customer’s point of view, customers will not concerned too much about how much personal information is collected, they just want to get valuable personalized services in return. Consequently, this study suggests that operators should strengthen consumers’ perceived benefit and increase the motivation for disclosing personal information. Refer to the privacy policy of model enterprises, and add the new or different part as special terms.
論文目次 Chapter 1 Introduction ………………………………………………………………………………………………………1
1.1 Background and motivations 1
1.2 Research Questions 5
1.3 Research Flow 5
Chapter2 Literature Review ………………………………………………………………………………………………7
2.1 Wearable devices 7
2.1.1 Word definition 7
2.1.2 The way of data transmission 8
2.1.3 The applications of wearable devices 9
2.1.4 Privacy problems of wearable devices 12
2.2 Privacy calculus 14
Chapter 3 Methodology ………………………………………………………………………………………………….16
3.1 Document Analysis 16
3.2 Questionnaire 17
3.2.1 Research model and hypotheses 17
3.2.2 Measurement items 23
3.2.3 Data collection and methodology 28
Chapter 4 Research findings and discussion…………………………………………….31
4.1 Privacy-related regulations 31
4.1.1 General Data Protection Regulation (GDPR) 31
4.1.2 APEC Privacy Framework 35
4.2 Analysis of questionnaire result 38
4.2.1 Analysis of pretest result 38
4.2.2 Analysis of formal questionnaire result 40
4.2.3 Summary 58
4.3 Comparison between wearable device operators’ privacy policy 60
4.3.1 Xiaomi privacy policy 61
4.3.2 Garmin privacy policy 69
4.3.3 Fitbit privacy policy 73
4.3.4 Apple privacy policy 79
4.3.5 Summary 84
Chapter 5 Conclusions and Suggestions ………………………………………………………………………….88
5.1 Research conclusion 88
5.3 Research limitation 92
5.4 Future research 92
References ………………………………………………………………………………………………………………………94
參考文獻 Andrade, E. B., Kaltcheva, V., & Weitz, B. (2002). Self-disclosure on the web: the impact ofprivacy policy, reward, and company reputation. Advances in Consumer Research, 29(1), pp. 350-353.
APEC. (2005). APEC Privacy Framework. CTI Sub-Fora & Industry Dialogues Groups, Electronic Commerce Steering Group.
Apple. (2018). Apple Privacy Policy. Retrieved 4 2018, from Apple Official Website: https://www.apple.com/legal/privacy/tzh/
Awad, N. F., & Krishnan, M. (2006). The personalization privacy paradox: anempirical evaluation of information transparency and the willingness to beprofiled online for personalization. MIS Quarterly, 30(1), pp. 13–28.
Bagozzi, R., & Yi, Y. (1988). On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Sciences, 16, pp. 74-94.
Bandura, A. (1986). Fearful expectations and avoidant actions as coeffects ofperceived self-inefficacy. American Psychologist, 41, pp. 1389–1391.
Bloomberg. (2016). How Wearable Tech Could Improve Hospital Efficiency. Retrieved from Bloomberg.com: http://www.bloomberg.com/news/videos/b/
Boyles, J., Smith, A., & Madden, M. (2012, 9 5). Privacy and Data Management on Mobile Devices.
Chakraborty, S., Choi, H., & Srivastava, M. B. (2011). Demystifying privacy in sensory data: a QoL based approach. IEEE Int. Conference on Pervasive Computing and Communications Workshops, (pp. 38–43).
Chan, M., Estève, D., Fourniols, J.-Y., Escriba, C., & Campo, E. (2012, 11). Smart wearable systems: current status and. Artificial Intelligence in Medicine, 56(3), pp. 137-156.
Culnan, M. J., & Armstrong, P. K. (1999). Information privacy concerns, proceduralfairness, and impersonal trust: an empirical investigation. Organization Science, 10(1), pp. 104–115.
Derlega, V. J., & Chaikin, A. L. (1977). Privacy and self-disclosure in socialrelationships. Journal of Social Issues, 33(3), pp. 102–115.
Despommier, D. (2013). People, Parasites, and Plowshares: Learning From Our Body’s Most Terrifying Invaders. Columbia University Press.
Dinev, T., & Hart, P. (2004). Internet privacy concerns and theirantecedents–measurement validity and a regression model. Behaviour andInformation Technology, 23(6), pp. 413–422.
Dinev, T., & Hart, P. (2006). Privacy concerns and levels of information exchange: Anempirical investigation of intended e-services use. e-Service Journal, 4(3), pp. 25-60.
Dinev, T., Xu, H., Smith, J. H., & Hart, P. (2013). Information privacy and correlates: anempirical attempt to bridge and distinguish privacy-related concepts,. European Journal of Information Systems, 22(3), pp. 295–316.
Eastlick, M. A., Lotz, S. L., & Warrington, P. (2006). nderstanding online B-to-Crelationships: an integrated model of privacy concerns, trust, andcommitment. Journal of Business Research, 59(8), pp. 877-886.
Ericsson consumerlab. (2016). Wearable technology and the IoT. Ericsson consumerlab. Retrieved from Ericsson consumerlab.
Ertin, E., Stohs, N., Kumar, S., Raij, A., al’Absi, M., & Shah, S. (2011). Autosense: unobtrusively wearable sensor suite for inferring the onset, causality, and consequences of stress in the field. Embedded Networked Sensor Systems, (pp. 274–287).
Fitbit. (2018). Fitbit Privacy Policy. Retrieved 4 2018, from Fitbit Official Website: https://www.fitbit.com/tw/legal/privacy-policy
Fornell, C., & Larcker, D. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), pp. 39-50.
Garmin. (2017). Garmin Privacy Policy. Retrieved 4 2018, from Garmin Official Website: http://www.garmin.com.tw/privacy/
Graeff, T. R., & Harmon, S. (2002). Collecting and using personal data: consumersawareness and concerns. Journal of Consumer Marketing, 19(4), pp. 302–318.
Hair, G., Black, B., Babin, B., Anderson, R., & Tatham, R. (2010). Multivariate Data Analysis. New Jersey: Pearson.
Handler, S. M., Boyce, R. D., Ligons, F. M., Perera, S., Nace, D. A., & Hochheiser, H. (2013). Use and perceived benefits of mobile devices by physicians inpreventing adverse drug events in the nursing home. Journal of the AmericanMedical Directors Association,, 14(12), pp. 906–910.
Harada, S., Sato, D., Takagi, H., & Asakawa, C. (2013). Characteristics of Elderly User Behavior on Mobile Multi-touch Devices. Human-Computer Interaction – INTERACT 2013, pp. 323-341.
Harmon, A. (2010). Where’d you go with my DNA. Retrieved from New York Times: http://www.nytimes.com/2010/04/25/weekinreview/25harmon.html?pagewanted=all.
HerzogThomas. (1996). 社會科學研究方法與資料分析. (朱柔若, 譯者) 揚智.
Jia, W., Bandodkar, A. J., Valdés-Ramírez, G., Windmiller, J. R., Yang, Z., Ramírez, J., . . . Wang, J. (2013). Electrochemical Tattoo Biosensors for Real-Time Noninvasive Lactate Monitoring in Human Perspiration. Analytical Chemistry, 85(14), pp. 6553–6560.
Jin, B., Park, J. Y., & Kim, J. (2010). Joint influence of online store attributes and offlineoperations on performance of multichannel retailers. Behaviour & Information Technology, 29(1), pp. 85–96.
Keith, M. J., Thompson, S. C., Hale, J., Lowry, P. B., & Greer, C. (2013). nformationdisclosure on mobile devices: re-examining privacy calculus with actual userbehavior. International Journal of Human-Computer Studies, 71(12), pp. 1163–1173.
Khansa, L., Davis, Z., Davis, H., Chin, A., Irvine, H., Nichols, L., . . . MacMichael, N. (2016). Health information technologies for patients with diabetes. Technology in Society, 44, pp. 1-9.
Khosravi, P., & Ghapanchi, A. H. (2016). Investigating the effectiveness of technologies applied to assist seniors: A systematic literature review. International Journal of Medical Informatics, 85(1), pp. 17-26.
Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making modelin electronic commerce: the role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), pp. 544–564.
Krishnan, M., & Kannan, G. (2016). Polygon Shaped 3G Mobile Band Antennas for High Tech Military Uniforms. Advanced Electromagnetics, 5(3), pp. 7-13.
Krumm, J. (2009). A survey of computational location privacy. Personal and Ubiquitous Computing, 13(6), pp. 391–399.
Labrecque, L., Markos, E., & Milne, G. R. (2011). Online personal branding:processes, challenges, and implications. Journal of Interactive Marketing, 25(1), pp. 37–50.
Laufer, R. S., & Wolfe, M. (1977). Privacy as a concept and a social issue: amultidimensional developmental theory. Journal of Social Issues, 33(3), pp. 22–42.
Lee, D. H., Im, S., & Taylor, C. R. (2008). oluntary self-disclosure of information onthe Internet: a multimethod study of the motivations and consequences ofdisclosing information on blogs. Psychology & Marketing, 25(7), pp. 692–710.
Lee, D., & LaRose, R. (2011). The impact of personalized social cues of immediacyon consumers information disclosure: a social cognitive approach,CyberPsychology. Behavior & Social Networking, 14(6), pp. 337–343.
Lee, E., Ahn, J., & Kim, Y. J. (2014). Personality traits and self-presentation at Facebook. Personality and Individual Differences, 69, pp. 162–167.
Lee, E., Han, S., & Jo, S. (2017). Consumer choice of on-demand mHealth app services: Context and contents values using structural equation modeling. International Journal of Medical Informatics, 97, pp. 229-238.
Lee, J. (2014). How brands build trust in a digital world. Retrieved from Huge: https://www.hugeinc.com/articles/how-brands-build-trust-in-a-digital-world
Lee-Won, R. J., Shim, M., Joo, Y. K., & Park, S. G. (2014). Who puts the best faceforward on Facebook?: Positive self-presentation in online social networkingand the role of self-consciousness, actual-to-total Friends ratio, and culture. Computers in Human Behavior, 39, pp. 413–423.
Li, H., Sarathy, R., & Xu, H. (2010). Understanding situational online informationdisclosure as a privacy calculus. Journal of Computer Information Systems, 51(1), pp. 62–71.
Li, H., Sarathy, R., & Xu, H. (2011). The role of affect and cognition on online consumers’decision to disclose personal information to unfamiliar online vendors. Decision Support Systems, 51(3), pp. 434-445.
Li, H., Wu, J., Gao, Y., & Shi, Y. (2016). Examining individuals’ adoption of healthcare wearable devices: An empirical study from privacy calculus perspective. International Journal of Medical Informatics, 88, pp. 8-17.
Li, M., WenJing, L., & Ren, K. (2010). Data security and privacy in wireless body area networks. Journal IEEE Wireless Communications, 17(1), pp. 51-58.
Li, Y. (2012). Theories in online information privacy research: a critical review andan integrated framework. Decision Support Systems, 54(1), pp. 471–481.
Li, Y. (2014). The impact of disposition to privacy, website reputation and websitefamiliarity on information privacy concerns. Decision Support Systems, 57(1), pp. 343–354.
Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users’ information privacyconcerns (IUIPC): the construct, the scale, and a causal model. InformationSystems Research, 15(4), pp. 336–355.
Milani, R., & Lavie, C. (2015). Health care 2020: reengineering health care delivery to combat chronic disease. American Journal of Medicine, 128(4), pp. 337–343.
MilaniR.V., BoberR.M., & LavieC.J. (2016). The role of technology in chronic disease care. Progress in Cardiovascular Diseases, 58(6), 頁 579–583.
Milne, G. R., & Culnan, M. J. (2004). Strategies for reducing online privacy risks:why consumers read (or don’t read) online privacy notices. Journal ofInteractive Marketing,, 18(3), pp. 15–29.
Milne, G. R., & Gordon, M. E. (1993). Direct mail privacy-efficiency trade-offswithin an implied social contract framework. Journal of Public Policy &Marketing, 19(2), pp. 206–215.
Mischke, J. (2011). WT for an aging population. Retrieved from wearable-technologies.com: http://www.wearable-technologies.com/2011/06/wt-for-an-aging-population/
Morosan, C. (2015). Understanding the benefit of purchasing ancillary air travelservices via mobile phones. Journal of Travel & Tourism Marketing, 32(3), p. 227.
Narayanan, A., & Shmatikov, V. (2008). Robust de-anonymization of large sparse datasets. IEEE Symposium on Security and Privacy, (pp. 111–125).
Norberg, P. A., Horne, D. R., & Horne, D. A. (2007). The privacy paradox: personalinformation disclosure intentions versus behaviors. Journal of Consumer Affairs, 41(1), pp. 100–126.
Paul, K. (2014). New Wearable Baby Monitor Is Like a Fitbit for Infants. Retrieved from mashable.com: http://mashable.com/2014/08/07/sproutlingwearable-
Phelps, J., Nowak, G., & Ferrell, E. (2000). Privacy concerns and consumer willingness toprovide personal information. Journal of Public Policy & Marketing, 19(1), pp. 27–41.
Raij, A., Ghosh, A., Kumar, S., & Srivastava, M. (2011). Privacy risks emerging from the adoption of innocuous wearable sensors in the mobile environment. Annual Conference on Human Factors in Computing Systems, (pp. 11–20).
Riahi-Belkaoui, A., & Pavlik, E. L. (1992). Accounting for Corporate Reputation. PraegerPub Text.
Rui, J., & Stefanone, M. A. (2013). Strategic self-presentation online: across-cultural study. Computers in Human Behavior, 29(1), pp. 110–118.
Stone, E. F., & Stone, D. L. (1990). Privacy in organizations: theoretical issues,research findings, and protection mechanisms. Research in Personnel andHuman Resources Management, 8(3), pp. 349–411.
Taylor, D., Davis, D., & Jillapalli, R. (2009). Privacy concern and onlinepersonalization: the moderating effects of information control and compensation. Electronic Commerce Research, 9(3), pp. 203–223.
Top Consumer Reviews. (2015). Medical Alert Systems. Retrieved from opconsumerreviews.com: http://www.topconsumerreviews.com/medical-alertsystems/
Vidmar, N., & Flaherty, D. H. (1985). Concern for personal privacy in an electronic age. 35(2), pp. 91–103.
Wright , R., & Keith, L. (2014). Wearable technology: if the tech fits, wear it. Journal of Electronic Resources in Medical Libraries, 11(4), pp. 204–216.
Xiaomi. (2016). Xiaomi Privacy Policy. Retrieved 4 2018, from Xiaomi Official Website: http://www.mi.com/tw/about/privacy/
Xu, H., Luo, X., Carroll, J. M., & Rosson, M. B. (2011). The personalization privacyparadox: an exploratory study of decision making process for location-awaremarketing. Decision Support Systems, 51(1), pp. 42–52.
Xu, H., Teo, H. H., Tan, B. C., & Agarwal, R. (2009). The role of push-pull technologyin privacy calculus: the case of location-based services. Journal of ManagementInformation Systems, 26(3), pp. 135–174.
Yusif, S., Soar, J., & Hafeez-Baig, A. (2016). Older people, assistive technologies, and the barriers to adoption: A systematic review. International Journal of Medical Informatics, 94, pp. 112-116.
莊庭瑞. (2015). 公眾資料及其治理:臺灣的情境. 國土及公共治理季刊(3), pp. 38-48.
黃彥棻. (2017). 快速入門,專家解讀GDPR十大重點. Retrieved 3 10, 2018, from iThome: https://www.ithome.com.tw/news/116876
黃彥棻. (2018). 【歐盟最嚴格個資法正式實施】臺灣5種企業受到GDPR規範. Retrieved 3 10, 2018, from iThome: https://www.ithome.com.tw/news/121580

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-10-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-10-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw