進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0610201618071900
論文名稱(中文) 電化學感測器與心電圖之生理訊號擷取系統研製
論文名稱(英文) Design of Physiological Signal Acquisition Systems for Bioelectrochemical Sensing and Electrocardiography
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 105
學期 1
出版年 105
研究生(中文) 馬偉哲
研究生(英文) Wei-Jhe Ma
學號 N28991405
學位類別 博士
語文別 英文
論文頁數 127頁
口試委員 召集委員-邱俊誠
口試委員-林裕城
共同指導教授-賴信志
指導教授-羅錦興
口試委員-楊明長
口試委員-李順裕
口試委員-勞勃律格
中文關鍵字 生物訊號擷取裝置  電化學感測器  儀表放大器  心電圖  壓縮演算法 
英文關鍵字 physiological signal acquisition device  bioelectrochemical sensor  instrumentation Amplifier (IA)  ECG  compression algorithm 
學科別分類
中文摘要 生物訊號擷取應用於居家照護和生理狀況快篩逐漸被討論和重視,主要目的是為了提供使用者居家醫療監測及遠距照護。泌尿道感染好發於老化社會中,嚴重的感染會導致腎功能不全與腎臟功能障礙,此類患者在高齡人口中有相當高的比例。此研究以酸鹼值高低及尿素濃度分別可作為泌尿道感染及腎功能障礙之指標數據。另外,心臟和腎臟的急性或慢性功能變化可能導致另一器官的急性或慢性器官失調將心腎症候群,因此,這些患者必須利用心電圖長期監測心臟的狀況。過去的研究成果為居家照護的應用帶來進步,但依然有一些問題存在,包含低靈活度的系統,影響活動性,使用者無法順利操作,抑或是擷取系統承擔得資料量過於龐大,造成其他軟硬體負擔提高。為了改善以上這些問題,本研究提出手持式、快速檢測平台,並開發簡易的使用者介面與行動裝置應用,以及開發資料壓縮演算法等功能,來實現擁有不同需求的生物訊號擷取裝置。
以生物電位式訊號為主軸,利用酸鹼值與尿素之電位式電化學感測器,以及心電訊號專用的生物電位乾電極作為訊號感測。一個完整的生物訊號擷取系統不僅具有感測元件與前端放大,還需要類比數位轉換器將類比訊號轉換成數位訊號,並使用微控制器實現資料傳輸及電源控管的功能,透過低功率元件的使用與設計,實現省電的手持式訊號擷取裝置。在即時數位化讀取系統與簡易使用者介面的部分,延續上述之設計,透過顯示面板做數據的即時顯示噢無線收發器做資料傳輸,並在行動式裝置上開發圖形化介面應用,如此,使用者便可輕易利用此系統完成簡易的檢測與生物訊號的分析。另外,長期心電監測照護系統產生的龐大資料量已成為網路頻寬與儲存空間一大負擔,因此本研究提出利用可變長度的第四型態離散餘弦轉換技術開發心電壓縮演算法來解決問題,將心電訊號做大量低失真的壓縮,並開發心電訊號擷取裝置與演算法整合驗證。
手持式訊號擷取系統搭配尿素感測器進行整合,在電化學實驗中,量測3.16 mM至50 mM莫耳濃度範圍之尿素變化,其線性度達0.995,整體裝置僅25.8〖cm〗^2面積,總功耗不到15毫瓦,利用鋰電池供電可達數天,適用於長期監測的可攜式生物訊號擷取裝置。為了簡化擷取系統使用介面的使用,本研究將即時數位化讀取系統與酸鹼值感測器做整合,利用Android行動裝置實現簡易的使用者平台,並成功在行動裝置上完成遠距遙測與設定。最後,透過心電訊號擷取系統完成實現,透過MIT-BIT心律不整資料庫的48組測試樣本做模擬驗證,其結果顯示平均的壓縮比、百分比均方根差、及品質分數分別為6.86、0.18、39.86。
英文摘要 Recently, increasing attention has been devoted to research into personal health-care due to the globally aging population and related rise in the incidence of chronic diseases. Urinary tract infection (UTI) is the second most common infection in the world, and most often occurs in children, women, and elderly people. These patients are nearly elderly people, among which the renal insufficiency is majority. In clinical practice, pH value and urea concentration are two analytes of renal function and UTI detection, respectively. In addition, cardiorenal syndromes (CRS) are disorders of the heart and kidneys whereby acute or long-term dysfunction in one organ may induce acute or long-term dysfunction of the other. Therefore, it is essential for long-term monitoring or to obtain 24-hr nonstop recordings of electrocardiogram (ECG) and other bio-signals.
Over the last decade or so much research has focused on homecare applications that enable simple and reliable biomedical signal detection, although existing systems have a number of problems, such as difficult operation, low mobility, complex user interfaces or the huge amount of data that is obtain, burdening the systems’ with bandwidth and memory capacity. In order to address these issues, this study proposed several systems with the following characteristic to achieve different demand-orientations in physiological signal acquisition application. These include the use of a portable device, quick-check platform, simple user interface of the mobile application, and a data compression algorithm.
Potentiometric bio-signals are the focus in this study, and thus pH and urea custom potentiometric sensors and dry electrodes are used for the bioelectrochemical sensing applications and ECG signal acquisition, respectively. These sensors employ an instrumentation amplifier (IA) as the analog front-end (AFE) circuit to measure the potential signal. A complete physiological signal acquisition system commonly consists of a sensing transducer, an analog front-end (AFE) circuit, an analog-to-digital convertor (ADC), a microcontroller unit (MCU) and a radio frequency (RF) transmitter. The portable signal acquisition devices proposed in this work are thus able to enhance the device lifetime through the low-power design. In addition, a real-time digitized readout system is implemented in this study for rapid development and user-friendly application, which includes an open-source microcontroller platform, a LCD screen and an Android application for user interface. Moreover, the Android application, which can used on mobile devices, improves the development and convenience of the biotelemetry interface and enables remote setting via Bluetooth 4.0. Moreover, an ECG signal acquisition circuit design integrated with discrete component and an FPGA platform is built for the development of long-term ECG monitoring. The flexible poly-dimethylsiloxane (PDMS) dry electrodes are proposed in this work to acquire ECG signals for long-term monitoring. To avoid the burden of bandwidth and memory capacity, a variable-transform-length DCT-IV-based ECG compression algorithm with high performance is further proposed to significantly reduce the large amount of data that is stored and transmitted.
The linear correlation established between the urea concentration and the potentiometric change is in the urea concentration range of 3.16 mM to 50 mM precision of 0.995. The total power consumption of the proposed system is thus 12.42 mW. The Android application provides a simple telemetry system for users that not only improves the interface by making it much more user-friendly, but also provides comparable results for users or patients.
In order to fairly evaluate the proposed compression algorithm, the ECG signals sourced from the MIT-BIT arrhythmia database with a sampling rate of 360 Hz are employed as the test patterns. The simulation results show the averages of CR, Percent RMS Difference (PRD), and QS are 6.86, 0.18, 2.60, 1.68, 32.19, and 39.86, respectively, for all 48 lead-II patterns of the MIT-BIH database. The experimental results clearly show that the proposed system would be a better choice for achieving ECG signal acquisition in the future.
論文目次 摘要 I
Abstract IV
誌謝 VII
Contents X
Table Captions XIV
Figure Captions XV
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Organization of Dissertation 9
Chapter 2 Review of Instrumentation Amplifier Topologies 12
2.1 Instrumentation Amplifier Topologies 12
2.2 Differential Difference Amplifier 16
2.2.1 Simplified DDA Design 16
Chapter 3 Bioelectrochemical Sensing Acquisition Devices 20
3.1 A Portable Bioelectrochemical Readout System with a Urease Sensor 20
3.1.1 MEMS-Based Bioelectrochemical Urea Sensor Fabrication Process 22
3.1.2 Bioelectrochemical Detection of Urea Concentration 26
3.1.3 System Description 27
3.1.4 The Proposed Front-End Circuit for Open Circuit Potential 28
3.1.5 Ultra-Low-Power MSP430 MCU 30
3.1.6 Data Transmission 33
3.2 Potentiometric Bioelectrochemical Sensor Readout Circuit 35
3.2.1 The Proposed Bioelectrochemical Signal Acquisition Chip 36
3.2.1.1 DDA IA 37
3.2.1.2 Second-Order Low-Pass Filter 38
3.2.2 Microcontroller Unit Usage 39
3.2.3 UART 40
3.2.4 Custom-Developed Software 41
3.3 Real-Time Digitized Readout System with Bioelectrochemical pH Sensors 43
3.3.1 pH Sensor Fabrication Process 46
3.3.1.1 Screen-Printed Gold Electrode 47
3.3.1.2 The Mechanism of Iridium Oxide pH Indicator 48
3.3.1.3 Biolectrochemical pH Sensor Fabrication Process 49
3.3.2 System description 50
3.3.2.1 Front-End Circuit 52
3.3.2.2 Micro Control Unit Usage and its Kernel Formula Design 53
3.3.2.3 Peripheral Devices for pH Monitoring and Data Storage 55
3.3.2.4 Bluetooth 4.0 Wireless Transceiver for the Mobile Device 56
3.3.2.5 Android Mobile Device Application 57
Chapter 4 ECG Signal Acquisition System Devices 59
4.1 ECG Signal Acquisition Device Using FPDE 59
4.1.1 Flexible PDMS Dry Electrodes Fabrication Process 60
4.1.2 The Proposed ECG Signal Acquisition Device 62
4.1.3 DE0-nano FPGA Platform 64
4.2 DCT-IV based ECG Compression Algorithm Application 65
4.2.1 1/2 Downsampling and Normalization 65
4.2.2 Peak Detection and Segmentation 66
4.2.3 Variable-transform-length DCT-IV Computation and Uniform Quantization 69
4.2.4 Backward Computation and Huffman Encoding 71
4.2.5 Reconstruction of the Compressed ECG Data 72
Chapter 5 Results 74
5.1 A Portable Bioelectrochemical Readout System with a Urease Sensor 74
5.1.1 Urea Sensor 74
5.1.1.1 SEM Images of the Poly Film Fabricated on the Au Electrode 75
5.1.2 The Proposed Portable Acquisition System 76
5.1.3 Detection of Urea Concentration 79
5.2 Power-Efficient Acquisition Device for Potentiometric Bioelectrochemical Sensors 83
5.2.1 Bioelectrochemical Sensing Acquisition Chips 83
5.2.2 The Proposed Power-Efficient Acquisition Device 84
5.3 Real-Time Digitized Readout System for pH Detection 89
5.3.1 SPGE pH Detection Using a pH Meter 89
5.3.2 The Proposed Real-Time Digitized Readout System 91
5.4 ECG Signal Acquisition Device Using FPDE 98
5.4.1 Proposed FPDE package 98
5.4.2 Measurement Results for the FPDE impedance 99
5.4.3 Measurement results for the proposed flexible PDMS 100
5.5 DCT-IV based ECG Compression Algorithm Application 102
5.5.1 Performance Tests for Various ECG Compression Algorithms 102
Chapter 6 Discussion and Conclusions 106
6.1 Discussion 106
6.2 Impedance Sensor Readout Circuit for Renal Function 107
6.3 Self-Designed MCU 109
6.4 Conclusion 114
6.5 Future Work 117
References 118
參考文獻 [1] T. Vering, S. Adam, H. Drewer, C. Dumschat, R. Steinkuhl, A. Schulze, E .G. Siegel and M. Knoll, “Wearable microdialysis system for continuous in vivo monitoring of glucose,” Analyst, 123, 7, 1605–1609, 1998.
[2] Z. P. Tang, X. G. Du, R. Louie and G. J. Kost, “Effect of drugs on glucose measurements with handheld glucose meters and a portable glucose analyzer,” Am. J. Clin. Pathol., 113, 1, 75–86, 2000.
[3] M. M. Ahmadi and G. A. Jullien, “A wireless-implantable microsystem for continuous blood glucose monitoring,” IEEE Trans. Biomed. Circuits Syst., 3, 3, 169–180. 2009.
[4] D. Lucani, G. Cataldo, J. Cruz, G. Villegas and S. Wong, “A portable ECG monitoring device with bluetooth and holter capabilities for telemedicine applications,” In Proceedings of the 28th Annual International Conference on Engineering in Medicine and Biology Society, New York, NY, USA, pp. 5244–5247, 29–30 August 2006.
[5] C. Wen, M. F. Yeh, K. C. Chang and R. G. Lee, “Real-time ECG tele-monitoring system design with mobile phone platform,” Measurement, 41, 463–470, 2008.
[6] F. S. Jaw, Y. L. Tseng and J. K. Jang, “Modular design of a long-term portable recorder for physiological signals,” Measurement, 43, 1363–1368, 2010.
[7] N. H. Chou, J. C. Chou, T. P. Sun and S. K. Hsiung, “Study on the disposable urea biosensors based on PVC-COOH membrane ammonium ion-selective electrodes,” IEEE Sens. J., 6, 262-268, 2006.
[8] P. K. Sekhar and E. L. Brosha, “Trace detection of 2, 4, 6-trinitrotoluene using electrochemical gas sensor,” IEEE Sens. J., 15, 1624–1629, 2015.
[9] H. Li, X. Mu, Y. Yang and A. J. Mason, “Low power multimode electrochemical gas sensor array system for wearable health and safety monitoring.” IEEE Sens. J, 14, 3391–3399, 2014.
[10] V. Nandakumar, D. Bishop, E. Alonas, J. LaBelle, L. Joshi and T. L. Alford, “A Low-Cost Electrochemical Biosensor for Rapid Bacterial Detection,” IEEE Sens. J., 11, 210–216, 2011.
[11] C. S. Kim, C. H. Lee, J. O. Fiering, S. Ufer, C. W. Scarantino and H. T. Nagle, “Manipulation of microenvironment with a built-in electrochemical actuator in proximity of a dissolved oxygen microsensor,” IEEE Sens. J., 4, 568–575, 2004.
[12] W. S. Wang, H. Y. Huang, S. C. Chen, K. C. Ho, C. Y. Lin, T. C. Chou, C. H. Wu, W. F. Wang, C. F. Wu and C. H. Luo, “Real-time telemetry system for amperometric and potentiometric electrochemical sensor,” Sensors, 11, 8593-8610, 2011.
[13] W. Y. Chung, M. H. Yeh, J. C. Chen and S. K. Hsiung, “Design of a low-voltage instrumentation amplifier for enzyme-extended-gate field effect transistor based urea sensor application,” In Proceedings of the First IEEE International Workshop on Electronic Design, Test and Applications, Christchurch, New Zealand, 177–180, 29–31 January 2002.
[14] J. Q. Wang, J. C. Chou, T. P. Sun, S. K. Hsiung and G. B. Hsiung, “pH-based potentio-metrical flow injection biosensor for urea,” Sens. Actuators B Chem., 91, 5–10, 2003.
[15] J. J. Gau, E. H. Lan, B. Dunn, C. M. Ho and J. C. S. Woo, “A MEMS based amperometric detector for E. coli bacteria using self-assembled monolayers,” Biosens. Bioelectron., 16, 745–755, 2001.
[16] C. W. Chang, G. Maduraiveeran, J. C. Xu, G. W. Hunter and P. K. Dutta, “Design, fabrication, and testing of MEMS-based miniaturized potentiometric nitric oxide sensors,” Sens. Actuators B Chem., 204, 183–189, 2014.
[17] H. Kudo, T. Sawada, E. Kazawa, H. Yoshida, Y. Iwasaki and K. Mitsubayashi, “A Flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques,” Biosens. Bioelectron., 22, 558–562, 2006.
[18] J. Cha, J. I. Han, Y. Choi, D. S. Yoon and K. W. Oh, “DNA hybridization electrochemical sensor using conducting polymer,” Biosens. Bioelectron., 18, 1241–1247, 2003.
[19] C. Eggenstein, M. Borchardt, C. Diekmann, B. Gründig, C. Dumschat, K. Cammann, M. Knoll and F. Spener, “A disposable biosensor for urea determination in blood based on an ammonium-sensitive transducer,” Biosens. Bioelectron., 14, 33–41, 1999.
[20] L. T. Yin, Y. T. Lin, Y. C. Leu and C. Y. Hu, “Enzyme immobilization on nitrocellulose film for pH-EGFET type biosensors,” Sens. Actuators B Chem., 148, 207–213, 2010.
[21] A. V. M. Franco, “Recurrent urinary tract infections,” Best Practice & Research Clinical Obstetrics & Gynaecology, 19, 861-873, 2005.
[22] E. J. Dielubanza and A. J. Schaeffer, “Urinary tract infections in women,” Medical Clinics of North America, 95, 27-41, 2011.
[23] F. Cruz, M. Dambros, K. G. Naber, H. W. Bauer, and G. Cozma, “Recurrent urinary tract infections: Uro-Vaxom®, a new alternative,” European Urology Supplements, 8, 762-768, 2009.
[24] P. Estrela, D. Paul, P. Li, S. D. Keighley, P. Migliorato, S. Laurenson and P. K. Ferrigno, “Label-free detection of protein interactions with peptide aptamers by open circuit potential measurement,” Electrochim. Acta., 53, 6489-6496, 2008.
[25] 范佩君, 張智翔, 陳永昌, “心腎症候群及其處置,” 內科學誌, 25, 65-70, 2014.
[26] 林孟德, 蔡明松, 宋俊明, “心腎症候群之病態生理,” 內科學誌, 22, 392-400, 2011.
[27] 陳志遠, 國立成功大學電機所博士論文 “具有超疏水表面的聚二甲基矽氧烷可撓式電極應用於生理電位量測之研製,” 一百零三年六月。
[28] R. F. Yazicioglu, T. Torfs, P. Merken, J. Penders, V. Leonov, R. Puers, B. Gyselinckx and C. V. Hoof, “Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems,” Microelectronics Journal, 40, 1313-1321, 2009.
[29] C. L. Chang, C. W. Chang, C. M. Hsu, C. H. Luo and J. C. Chiou, “A Power-Efficient Wireless Sensor for Physiological Signal Acquisition”, Journal of Micro/Nanolithography, MEMS, and MOEMS (JM3), 021120-1-021120-7, 2009.
[30] C. L. Chang, C. W. Chang, H. Y. Huang, C. M. Hsu, C. H. Huang, J. C. Chiou and C. H. Luo, “A power-efficient bio-potential acquisition device with DS-MDE sensors for long-term healthcare monitoring applications,” Sensors, 10, 4777-4793, 2010.
[31] P. Griss, P. Enoksson, H.K. Tolvanen-Laakso, P. Meriläinen, S. Ollmar and G. Stemme, “Micromachined electrodes for biopotential measurements physiological signal measurements,” Journal of Microelectromechanical Systems, 10, 1, 10-16, 2001.
[32] P. Griss, H. K. Tolvanen-Laakso, P. Meriläinen and G. Stemme, “Characterization of micromachined spiked biopotential electrodes,” IEEE Trans. Bio-Med. Eng., 49, 6, 597-604, 2002.
[33] P. Griss, P. Enoksson and G. Stemme, “Micromachined barbed spikes for mechanical chip attachment,” Sens. Actuators A:Phys., 95, 2-3, 94-99, 2002.
[34] L. M. Yu, F. E.H. Tay, D. G. Guo, L. Xu and K. L. Yap, “A microfabricated electrode with hollow microneedles for ECG measurement,” Sens. Actuators A Phys, 151, 1, 17-22, 2009.
[35] M. Matteucci, R. Carabalona, M. Casella, E. Difabrizio, F. Gramatica, M. Dirienzo, E. Snidero, L. Gavioli and M. Sancrotti, “Micropatterned dry electrodes for brain–computer interface,” Microelectronic Engineering, 84, 5-8, 1737-1740, 2007.
[36] A. Gruetzmann, S. Hansen, and J. Müller, “Novel dry electrodes for ECG monitoring. Physiol.,” Measurement, 28, 1375–1390, 2007.
[37] C. Y. Chen, C. L. Chang, T. F. Chien, and C. H. Luo, “Flexible PDMS electrode for one-point wearable wireless bio-potential acquisition,” Sens. Actuators A Phys, 203, 20-28, 2013.
[38] C. Y. Chen, C. L. Chang, C. W. Chang, S. C. Lai, T. F. Chien, H. Y. Huang, J. C. Chiou, and C. H. Luo, “A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications,” Sensors, 13, 3077-3091, 2013.
[39] J. Y. Baek, J. H. An, J. M. Choi, K. S. Park and S. H. Lee, “Flexible polymeric dry electrodes for the long-term monitoring of ECG,” Sens. Actuators A Phys, 143, 2, 423-429, 2008.
[40] J. H. Moon, D. H. Baek, Y. Y. Choi, K. H. Lee, H. C. Kim, and S. H. Lee, “Wearable polyimide-PDMS electrodes for intrabody communication,” Journal of Micromechanics and Microengineering, 20, 25–32, 2010.
[41] W. S. Wang, H. Y. Huang, Z. C. Wu, S. C. Chen, W. F. Wang, C. F. Wu and C. H. Luo, “Wireless bio-potential acquisition system for portable healthcare monitoring,” Journal of Medical Engineering & Technology, 35, 254-261, 2011.
[42] E. Nemati, M. J. Deen and T. Mondal, “A wireless wearable ECG sensor for long-term applications,” IEEE Commun. Mag., 50, 1, 36-43, 2012.
[43] G. H. Yee, P. K. Gopalakrishnan, T. H. Teo and C. Zhiming, “A low-complexity ultra-low-power ECG compression and transmission scheme,” Integrated Circuits, ISIC '09. Proceedings of the 2009 12th International Symposium, pp. 683-686, 14-16 Dec. 2009.
[44] S. L. Chen, H. Y. Lee, C. A. Chen, H. Y. Hung and C. H. Luo, “Wireless body sensor network with adaptive low-power design for biometrics and healthcare applications,” IEEE Syst. J., 3, 4, 398-409, 2009.
[45] K. Ranjeet, A. Kumar, and R. K. Pandey, “ECG signal compression using different techniques,” Communications in Computer and Information Science, Advances in Computing, Communication and Control, 125, 231-241, 2011.
[46] L. V. Batista, E. U. K. Melcher and L. C. Carvalho, “Compression of ECG signals by optimized quantization of discrete cosine transform coefficients,” Medical Engineering & Physics, 23, 2, 127-134, 2001.
[47] M. S. Alam and N. M. S. Rahim, “Compression of ECG signal based on its deviation from a reference signal using discrete cosine transform,” IEEE Electrical and Computer Engineering (ICECE 2008), 53-58, 20-22 Dec, 2009.
[48] S. J. Lee and M. Lee, “A real-time ECG data compression algorithm for a digital Holter system,” 30th Annual International IEEE EMBS Conference, 4736–4739, 20-25 Aug. 2008.
[49] S. J. Lee, J. Kim and M. Lee, “A real-time ECG data compression and transmission algorithm for an e-health device,” IEEE Trans. Bio-Med. Eng., 58, 9, 2448-2455, 2011.
[50] A. Bendifallah, R. Benzid and M. Boulemden, “Improved ECG compression method using discrete cosine transform,” Electronics Letters, 47, 2, 87-89, 2011.
[51] S. K. Mukhopadhyay, M. Mitra and S. Mitra, “An ECG data compression method via R-Peak detection and ASCII character encoding,” International Conference on Computer, Communication and Electrical Technology (ICCCET), 136-141, 18-19 Mar. 2011.
[52] S. K. Mukhopadhyay, M. Mitra and S. Mitra, “A lossless ECG data compression technique using ASCII character encoding.” Computers & Electrical Engineering, 37, 4, 486-497, 2011.
[53] J. Istle, P. Mandelbaum and E. Regentova, “Online compression of ASCII files,” International Conference on Information Technology: Coding and Computing (ITCC'04), 1, 5-7, 2004.
[54] C. J. Huang, J. L. Lin, P. H. Chen, M. J. Syu and G. B. Lee, “A multi-functional electrochemical sensing system using micro-fluid technology for detection of urea and creatinine,” Electrophoresis, 32, 931–938, 2011.
[55] JPEG Entropy Coding http://cnx.org/content/m11096/latest (accessed on 31 August 2016).
[56] MIT-BIH Arrhythmia Database,
http://www.physionet.org/physiobank/database/mitdb/
[57] S. C. Lai, S. F. Lei and C. H. Luo, “Common architecture design of novel recursive MDCT and IMDCT algorithms for application to AAC, AAC in DRM, and MP3 codecs,” IEEE Trans. Circuits Syst. II, Exp. Briefs, 56, 10, 793–797, 2009.
[58] S. C. Lai, Y. P. Yeh, W. C. Tseng, and S. F. Lei, “Low-cost and high-accuracy design of fast recursive MDCT / MDST / IMDCT / IMDST algorithms and their realization,” IEEE Trans. Circuits Syst. II, Exp. Briefs, 59, 1, 65–69, 2012.
[59] R. Martins, S. Selberherr and F. A. Vaz, “A CMOS IC for portable EEG acquisition systems,” IEEE Trans. Instrum. Meas., 47, 1191-1196, 1998.
[60] G. Nicollini and C. Guardiani, “A 3.3-V 800-nV/sub rms/ noise, gain-programmable CMOS microphone preamplifier design using yield modeling technique,” IEEE J. Solid-State Circuits, 28, 915-921, 1993.
[61] E. M. Spinelli, R. Pallas-Areny, M. A. Mayosky, “AC-coupled front-end for biopotential measurements,” IEEE Trans. Bio-Med. Eng., 50, 391-395, 2003.
[62] E. M. Spinelli, N. Martinez, M. A. Mayosky and R. Pallas-Areny, “A novel fully differential biopotential amplifier with DC suppression,” IEEE Trans. Bio-Med. Eng., 51, 1444-1448, 2004.
[63] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, 38, 958-965, 2003.
[64] M. S. J. Steyaert and W. M. C. Sansen, “A micropower low-noise monolithic instrumentation amplifier for medical purposes,” IEEE J. Solid-State Circuits, 22, 1163-1168, 1987.
[65] A. A. Khan, M. A. Al-Turaigi and M. A. Ei-Ela, “An improved current-mode instrumentation amplifier with bandwidth independent of gain,” IEEE Trans. Instrum. Meas., 44, 887-891, 1995.
[66] A. P. Brokaw and M. P. Timko, “An improved monolithic instrumentation amplifier,” IEEE J. Solid-State Circuits, 10, 417-423, 1975.
[67] R. Martins, S. Selberherr and F. A. Vaz, “A CMOS IC for portable EEG acquisition systems,” IEEE Trans. Instrum. Meas., 47, 1191-1196, 1998.
[68] G. Nicollini and C. Guardiani, “A 3.3-V 800-nV/sub rms/ noise, gain-programmable CMOS microphone preamplifier design using yield modeling technique,” IEEE J. Solid-State Circuits, 28, 915-921, 1993.
[69] K. A. Ng and P. K. Chan, “A CMOS analog front-end IC for portable EEG/ECG monitoring applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, 52, 2335-2347, 2005.
[70] E. Sackinger and W. Guggenbuhl, “A versatile building block: the CMOS differential difference amplifier,” IEEE J. Solid-State Circuits, 22, 287-294, 1987.
[71] Franco, S. “Design With Operational Amplifiers And Analog Integrated Circuits,” 3rd ed.; McGraw-Hill, 79-85, 2001.
[72] 張嘉麟, 國立成功大學電機所博士論文 “無線生醫遙測系統之研製與前端訊號擷取電路晶片之設計,” 一百年一月。
[73] 王偉松, 國立成功大學電機所博士論文 “應用於生理訊號與電化學感測器之即時遙測系統,” 一百年六月。
[74] C. W. Chang and J. C. Chiou, “Surface-mounted dry electrode and analog-front-end systems for physiological signal measurements,” In Life Science Systems and Applications Workshop, 2009. LiSSA 2009. IEEE/NIH, 108-111, 2009.
[75] R. F. Yazicioglu, P. Merken, R. Puers and C. Van Hoof, “A 60 mW 60 nV/root Hz readout front-end for portable biopotential acquisition systems,” IEEE J. Solid-State Circuits, 42, pp. 1100–1110, 2007.
[76] T. Denison, K. Consoer, W. Santa, A.T. Avestruz, J. Cooley, A. Kelly, “A 2.2 W 94 nV/Hz, Chopper-Stabilized Instrumentation Amplifier for EEG Detection in Chronic Implants,” IEEE J. Solid-State Circuits, 42, 2934–2945, 2007.
[77] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of the IEEE, 84, 1584-1614, 1996.
[78] D. Aronson, M. A. Mittleman and A. J. Burger, “Elevated blood urea nitrogen level as a predictor of mortality in patients admitted for decompensated heart failure,” Am. J. Med, 116, 466–473, 2004.
[79] C. Ronco, R. Bellomo, P. Homel, A. Brendolan, M. Dan, P. Piccinni and G. L. Greca, “Effect of different doses in continuous veno-venous hemofiltration on outcomes of acute renal failure: A prospective randomized trial,” Lancet, 356, 26–30, 2000.
[80] A. Tiwari, “A novel nanocomposite matrix based on silylated chitosan and multiwall carbon nanotubes for the immobilization of urease,” J. Inorg. Organomet. Polym. Mater., 19, 361–366, 2009
[81] I. Bozgeyik, M. Senel, E. Cevik and M. F. Abasıyanık, “A novel thin film amperometric urea biosensor based on urease-immobilized on poly (N-glycidylpyrrole-co-pyrrole),” Curr. Appl. Phys., 11, 1083–1088, 2011.
[82] W. O. Ho, S. Krause, C. J. McNeil, J. A. Pritchard, R. D. Armstrong, D. Athey and K. Rawson, “Electrochemical Sensor for Measurement of Urea and Creatinine in Serum Based on ac Impedance Measurement of Enzyme-Catalyzed Polymer Transformation” Anal. Chem., 71, 1940–1946, 1999.
[83] A. Senillou, N. Jaffrezic-Renault, C. Martelet and S. Cosnier, “A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip,” Talanta, 50, 219–226, 1999.
[84] R. Koncki, A. Radomska and S. Gląb, “Potentiometric determination of dialysate urea nitrogen,” Talanta, 52, 13–17, 2000.
[85] J. H. Jin, S. H. Pake, C. W. Lee, N. K. Min and S. I. Hong, “Fabrication of amperometric urea sensor based on nano-porous silicon technology,” J. Korean Phys. Soc., 42, S735–S738, 2003.
[86] M. Singh, N. Verma, A. K. Garg and N. Redhu, “Urea biosensors,” Sens. Actuators B Chem., 134, 345–351, 2008.
[87] M. J. Syu and Y. S. Chang, “Ionic effect investigation of a potentiometric sensor for urea and surface morphology observation of entrapped urease/polypyrrole matrix,” Biosens. Bioelectron., 24, 2671–2677, 2009.
[88] B. G. Herlem, S. Lakard, A. Antoniou and B. Fahys, “Urea potentiometric biosensor based on modified electrodes with urease immobilized on polyethylenimine films.,” Biosens. Bioelectron., 19, 1641–1647, 2004.
[89] B. Lakard, D. Magnin, O. Deschaume, G. Vanlancker, K. Glinel, S. Demoustier-Champagne, B. Nysten, A. M. Jonas, P. Bertrand and S. Yunus, “Urea potentiometric enzymatic biosensor based on charged biopolymers and electrodeposited polyaniline,” Biosens. Bioelectron., 26, 4139–4145, 2011.
[90] G. Das and H. H. Yoon, “Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite,” Int. J. Nanomed., 10, 55–66, 2015.
[91] W. Z. Jia, L. Su and Y. Lei, “Pt nanoflower/polyaniline composite nanofibers based urea biosensor,” Biosens. Bioelectron., 30, 158–164, 2011.
[92] C. W. Pan, J. C. Chou, T. P. Sun and S. K. Hsiung, “Solid-state urea biosensor based on the differential method,” IEEE Sens. J., 6, 269–275, 2006.
[93] G. Slaugther, “A gold interdigitated microelectrodes fabricated on polyhydroxybutyrate substrate for the determination of urea using impedimetric measurements,” IEEE Sens. J., 12, 821–826, 2012.
[94] V. Laurinavicius, J. Razumiene and V. Gureviciene, “Bioelectrochemical conversion of urea on carbon black electrode and application,” IEEE Sens. J., 13, 2208–2213, 2013.
[95] N. H. Chou, J. C. Chou, T. P. Sun and S. K. Hsiung, “Measurement and comparison of potentiometric selectivity coefficients of urea biosensors based on ammonium ion-selective electrodes,” IEEE Sens. J., 5, 1362–1368, 2005.
[96] S. K. Mahadeva, J. Kim, “Porous tin-oxide-coated regenerated cellulose as disposable and low-cost alternative transducer for urea detection,” IEEE Sens. J., 13, 2223–2228, 2013.
[97] L. Li, Y. Q. Wang, L. J. Pan, Y. Shi, W. Cheng, Y. Shi and G. H. Yu, “A nanostructured conductive hydrogels-based biosensor platform for human metabolite detection,” Nano Lett., 15, 1146–1151, 2015.
[98] L. Li, Y. Shi, L. J. Pan, Y. Shi and G. H. Yu, “Rational design and applications of conducting polymer hydrogels as electrochemical biosensors,” J. Mater. Chem. B., 3, 2920‒2930, 2015.
[99] Y. Zhao, B. Liu, L. J. Pan and G. H. Yu, “3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices,” Energy Environ. Sci., 6, 2856–2870, 2013.
[100] M. Lambrechts and W. Sansen, “Biosensors: Microelectrochemical. Devices,” 1st ed.; Institute of Physics Publishing: Bristol, UK, 1992.
[101] A. J. Bard, L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications” 2nd ed.; Wiley: Hoboken, NJ, USA, 2001.
[102] Texas Instrument. MASP430F149 Texas Instrument Mixed Signal Microcontroller, 2011. Available online: http://www.ti.com/product/MSP430F149 (accessed on 31 August 2016).
[103] Texas Instruments, MSP430F149 Texas Instruments Mixed Signal Processor, 2000.
[104] R. A. Croce, Jr., S. Vaddiraju, A. Legassey, K. Zhu, S. K. Islam, F. Papadimitrakopoulos and F. C. Jain, “A highly miniaturized low-power CMOS-based pH monitoring platform,” IEEE Sensors J., 15, 895-901, 2015.
[105] W. D. Huang, S. Deb, Y. S. Seo, S. Rao, M. Chiao and J. C. Chiao, “A passive radio-frequency pH sensing tag for wireless food quality monitoring,” IEEE Sensors J., 12, 487-495, 2012.
[106] H. Cao, V. Landge, U. Tata, Y. S. Seo, S. Rao, S. J. Tang, H. F. Tibbals, S. Spechler and J. C. Chiao, “An implantable, batteryless, and wireless capsule with integrated impedance and pH sensors for gastroesophageal reflux monitoring,” IEEE Trans. Biomed. Eng., 59, 3131 -3139, 2012.
[107] J. F. Cheng, J. C. Chou, T. P. Sun, S. K. Hsiung and H. L. Kao, “Study on a multi-ions sensing system for monitoring of blood electrolytes with wireless home-care system,” IEEE Sensors J., 12, 967–977, 2012.
[108] B. H. Chu, B. S. Kang, C. Y. Chang, F. Ren, A. Goh, A. Sciullo, W. Wu, J. Lin, B. P. Gila, S. J. Pearton, J. W. Johnson, E. L. Piner and K. J. Linthicum, “Wireless detection system for glucose and pH sensing in exhaled breath condensate using AlGaN/GaN high electron mobility transistors,” IEEE Sensors J., 10, 64 -70, 2010.
[109] Arduino. Available online: http://arduino.cc/ (accessed on 31 August 2016).
[110] 廖偉茵, 國立成功大學化工所博士論文 “生理陽離子、三酸甘油酯與lipoprotein-associated phospholopase A2 生化感測器的研究,” 九十七年七月。
[111] 黃彥博, 大同大學化工所碩士論文 “發展電化學式pH生物感測器,” 一百零二年七月。
[112] S. Yao, M. Wang and M. Madou, “A pH electrode based on melt-oxidized iridium oxide,” J. Electrochem. Soc., vol. 148, H29-H36, 2001.
[113] S. A. M. Marzouk, S. Ufer, R. P. Buck, T. A. Johnson and L. A. Dunlap, “W.E. Cascio, Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia,” Anal. Chem., 70, 5054-5061, 1998.
[114] A. Fog and R. P. Buck, “Electronic semiconducting oxide as pH sensors,” Sens. Actuators B-Chem., 5, 137-146, 1984.
[115] G. Papeschi, S. Bordi, C. Beni and L. Ventura, “Use of an iridium electrode for direct measurement of PI of proteins after ioselectric-focusing in polyacrylasmide-gel,” Biochimica Et Biophysica Acta, 453, 192-199, 1976.
[116] P. J. Kinlen, J. E. Heider and D. E. Hubbard, “A Solid-state pH sensors-based on a nafion-coated iridium oxide indicator electrode and a polymer-based silver-chloride reference electrode,” Sens. Actuators B-Chem., 22, 13-25, 1994.
[117] D. H. Kim, N. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam and et al., “Epidermal electronics,” Science, 333, 838–843, 2011.
[118] J. Y. Baek, G. H. Kwon, J. Y. Kim, J. H. Cho, S. H. Lee, K. Sun, S. H. Lee, “Stable deposition and patterning of metal layers on the PDMS substrate and characterization for the development of the flexible and implantable micro electrode,” Solid State Phenomena, 124-126, 165-168, 2007.
[119] 戴佩真, 國立成功大學電機所碩士論文 “利用差分QRS波之無失真/失真姓心電訊號壓縮演算法與無線心電圖量測系統實現,” 一百零二年六月。
[120] L. T. Yin, H. Y. Wang, Y. C. Lin and W. C. Huang, “A Novel Instrumentation Circuit for Electrochemical Measurements,” Sensors, 12, 9687-9696, 2012.
[121] Agilent, Agilent E4980A Precision LCR Meter Analyzer Programming Manual, 2011.
[122] A. Karilainen, S. Hansen and J. Müller, “Dry and capacitive electrodes for long-term ECG-monitoring,” Eighth Annual Workshop on Semiconductor Advances for Future Electronics, 155-161, 2005.
[123] S. C. Lai, W. C. Chien, C. S. Lan, M. K. Lee, C. H. Luo, and S. F. Lei, “An efficient DCT-IV-based ECG compression algorithm and its hardware accelerator design,” International Symposium on Circuits and Systems (ISCAS), 1296-1299, 19-23 Mar. 2013.
[124] H. L. Chan, Y. C. Chiu, Y. A. Kao, and C. L. Wang, “VLSI implementation of wavelet-based electrocardiogram compression and decompression,” Journal of Medical and Biological Engineering, 31, 5, 331-338, 2010.
[125] 蘇建綸, 國立成功大學電機所碩士論文 “類比生醫前端感測結合三角積分調變之阻抗式讀取電路,” 一百零四年一月。
[126] A. Gnudi, L. Colalongo, and G. Baccarani, “Integrated Lock-In Amplifier for Sensor Applications,” Solid-State Circuits Conference, 1999. ESSCIRC '99. Proceedings of the 25th European, 58-61, Sep. 1999.
[127] W. J. Ma, and C. H. Luo, “A low Power Hand-Held Multi-sensing Bio-electrochemical Sensors Signal Acquisition System,” 2015 SEMBA, NSYSU, Kaohsiung, Taiwan, 2015.
[128] H. W. Chang, H. Y. Huang, Y. H. Juan, W. S. Wang and C. H, Luo,“Adaptive Successive Approximation ADC for Biomedical Accquisition System,” Microelectronics Journal, 44, 9, 729-735, 2013.
[129] 柯博涵, 國立成功大學電機所碩士論文, “應用於生醫電化學訊號擷取之阻抗振幅讀取電路與連續趨近式類比數位轉換器設計,” 一百零五年一月。
[130] 陳冠佑, 國立成功大學電機所碩士論文 “應用於泌尿系統功能檢測之電化學感測生醫系統微控制器設計,” 一百零四年一月。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-10-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw