進階搜尋


下載電子全文  
系統識別號 U0026-0610201114142200
論文名稱(中文) 結合實驗與理論研究有機光電元件:探討分子與微結構特徵對電荷傳輸與光伏性質的影響
論文名稱(英文) Joint experimental and theoretical studies of organic optoelectronic devices: Impact of the molecular and microstructural features on charge transport and photovoltaic properties
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 1
出版年 100
研究生(中文) 吳富喬
研究生(英文) Fu-Chiao Wu
學號 l7895105
學位類別 博士
語文別 英文
論文頁數 121頁
口試委員 指導教授-鄭弘隆
召集委員-許聯崇
口試委員-周維揚
口試委員-唐富欽
口試委員-楊長謀
口試委員-劉世鈞
中文關鍵字 有機半導體  薄膜電晶體  太陽能電池 
英文關鍵字 Organic semiconductor  Thin-film transistor  Solar cell 
學科別分類
中文摘要 以有機半導體薄膜做為光電元件的主動層,薄膜內部微結構的性質會影響帶電載子或激子在主動層中的行為,進而改變光電元件的光電特性。帶電載子或激子在有機半導體裡的行為包括傳輸、再結合、分離等,若能了解有機薄膜內部微結構控制這些行為的關鍵性質,將有助於提升有機光電元件的效能。在本論文,我們從微觀分子尺度的觀點,採用光譜分析搭配量子化學計算的方法,研究三種不同有機半導體薄膜內部的分子特徵與微結構性質,包括小分子、雙層高分子、高分子混摻碳六十衍生物,並進一步探討薄膜微結構性質與其相對應元件電特性間的關聯性。研究結果顯示,採用實驗搭配理論計算的方法分析有機薄膜,所得的分子特徵與薄膜微結構性質能成功地解釋相對應元件的電性表現,並藉此能找到影響元件電特性的關鍵因子。
第一部分,我們使用Fluorinated copper-phthalocyanine (F16CuPc)做為主動層材料,藉由將F16CuPc成長在不同溫度的基板上,產生不同的主動層內部微結構,製作有機薄膜電晶體。經由電性量測,我們發現將F16CuPc成長在120 oC的基板上,所製得之薄膜電晶體具有較佳的電特性表現,包括較高的飽和區場效載子遷移率、較大的飽和區輸出電流與開關電流比、較小的次臨界擺幅(subthreshold swing)。在薄膜分析的部分,首先使用X射線繞射儀及原子力顯微鏡分析不同成長條件之F16CuPc薄膜的結構與表面形態。然而分析的結果卻無法解釋相對應元件的電特性。因此考慮微觀分子的尺度及傳輸參數,藉由密度泛函理論(density functional theory)的方法計算單一F16CuPc分子的再組織能與拉曼光譜,同時也量測不同F16CuPc薄膜的拉曼光譜。分析結果發現176、953、1540 cm-1這三個貢獻再組織能較多的振動帶,其實驗光譜中對應的半高寬變化,能反應電晶體元件的電性變化,特別是飽和區場效載子遷移率。另一方面,幾個可以反應F16CuPc薄膜內部微結構品質的振動帶,如772和1197 cm-1,其實驗光譜中的半高寬大小也可以解釋電子在不同元件中的傳輸特性。此外,在F16CuPc薄膜的拉曼光譜中,沒有出現來自Davydov或晶場分裂所造成的振動帶分裂現象,顯示F16CuPc分子間的作用力相當微弱。因此在具弱分子間作用力的有機半導體薄膜中,例如F16CuPc,分子再組織能與薄膜微結構品質將是影響電荷傳輸的關鍵因素。
第二部分,我們利用不同沸點的溶劑製作poly(3-hexylthiophene) (P3HT)薄膜,並將之做為薄膜電晶體的主動層。透過分析薄膜的X射線繞射光譜、擬合薄膜的吸收光譜及量測元件的電特性,我們發現使用高沸點溶劑(如1,2,4-三氯苯)成長P3HT薄膜,與使用低沸點溶劑(如氯仿)相比,薄膜具有較好的微結構性質,因此相對應的電晶體元件在飽和區也具有較高的場效載子遷移率及較大的輸出電流。接著在不同P3HT薄膜上,以溶液製程的方式,皆旋轉塗佈上一poly(methyl methacrylate) (PMMA)高分子層,製作具半導體/絕緣體半互滲微結構的P3HT/PMMA雙層薄膜。在經由吸收、拉曼及X射線繞射這些光譜學的方法研究不同的雙層薄膜後,我們觀察到使用氯仿製作的P3HT薄膜,其原本有較差的微結構品質及一些聚集態的存在,在覆蓋上PMMA後,薄膜的微結構性質卻變好了,導致元件的電性獲得了改善。而使用高沸點溶劑製作的P3HT薄膜,在覆蓋上PMMA後,不僅薄膜的微結構品質變差,元件飽和區的輸出電流與場效載子遷移率也都跟著下降。造成這種現象的原因可能是原本具有聚集態的P3HT薄膜,在塗佈上PMMA的過程中,這些P3HT聚集態能保護其他較有序的P3HT分子避免被嚴重破壞或過度洗掉,同時可阻擋過多的PMMA分子滲入P3HT薄膜,防止過多的PMMA分子阻斷電荷在P3HT分子間的傳輸路徑。此外,藉由導入PMMA至P3HT薄膜中,可以增加元件閘極對主動層通道的控制能力,也就是元件會有較小的次臨界擺幅。因此,與單層P3HT薄膜相比,將適量的PMMA導入P3HT中形成具半導體/絕緣體半互滲微結構的P3HT/PMMA雙層薄膜,不僅可以改善電荷傳輸的特性,也使元件有較佳的電開關特性。
第三部分,我們以P3HT作為施體,[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)作為受體,將兩者混和後作為主動層材料,製作具異質接面結構的有機太陽能電池。為了能找到控制P3HT:PCBM太陽能電池光電特性的關鍵因子,我們改變PCBM在P3HT:PCBM薄膜中的比例,製作不同微結構的薄膜,並使用拉曼、X射線繞射及吸收光譜擬合等光譜學的方法分析薄膜內部微結構,探討薄膜微結構性質與相對應元件電特性間的關係。我們發現隨著PCBM比例的增加,P3HT結晶區內的有效共軛鏈長會稍微變長,但鏈構形的同質性則幾乎不變。然而隨著PCBM摻入量的不同,卻會對P3HT非結晶區產生較大的影響。在PCBM比例為50 wt%時,P3HT非結晶區內的有效共軛鏈長是較短的,同時鏈構形的同質性也是較差的,這意味著有較短有效共軛鏈長的非結晶P3HT較能與PCBM均勻混合,進而產生較多的p-n接觸區域。此外,我們也使用密度泛函理論的方法計算polythiophene與PCBM間電子親和能的差異與內建電位。計算結果顯示,具較短有效共軛鏈長的polythiophene與PCBM交互作用能產生較大的電子親和能差與內建電位,這將有利於激子分離且有助於元件產生較大的輸出電壓。在元件的電性表現方面,摻入50 wt%的PCBM於P3HT:PCBM所製作出的太陽能電池有較大的短路電流密度和開路電壓,以及最高的填充因子和光電轉換效率。因此,除了控制P3HT:PCBM薄膜裡結晶部分的P3HT外,能否精確控制薄膜中非結晶部分的P3HT將是提升有機太陽能電池光電轉換效率的關鍵因子。
英文摘要 The microstructural properties of organic semiconductor (OSC) thin films as active layers can affect the optoelectronic performance of organic optoelectronic devices by altering the behavior of charge carriers and excitons within films. Understanding of key microstructural properties in OSC films, which control the transportation, recombination, and dissociation, among others, of charge carriers and excitons, is essential in boosting the performance of devices. In the present thesis, the molecular and microstructural features of three organic films, namely, small-molecule, polymeric bilayer, and polymer:fullerene films, are examined from a microscopic molecular-scale perspective using joint spectroscopic methods and quantum chemical calculations. The electrical characteristics of the corresponding devices are also investigated. The molecular features and the thin-film microstructural information acquired from the combined experimental and theoretical techniques can suitably interpret the electrical properties of the corresponding devices.
In Part 1, fluorinated copper-phthalocyanine (F16CuPc) was used as the active layer material to fabricate F16CuPc-based thin-film transistors (TFTs). F16CuPc was grown on substrates at various substrate temperatures (Tsub) to form different F16CuPc thin-film microstructures. The F16CuPc-based TFTs fabricated at Tsub of 120 oC exhibit better electrical performance, that is, the higher saturated field-effect mobility (sat), the larger output on-current (IDSon) and on/off current ratio, and the sharper subthreshold swing (SS) behavior, compared with those properties of materials fabricated at other Tsub. F16CuPc films were analyzed using X-ray diffratometer (XRD) and atomic force microscope (AFM). However, data obtained from these techniques fail to show correlations with the electrical properties of the corresponding devices. The density functional theory (DFT) was adopted to calculate the Raman spectrum and reorganization energy (reorg) of a single F16CuPc molecule. The diverse F16CuPc thin films were also studied through Raman spectroscopy. The full-width-at-half-maximum (fwhm) of the experimental vibrational modes that contribute significantly to reorg, e.g., the Raman bands at 176, 953, and 1540 cm-1, has good correlations with the sat of F16CuPc-based TFTs. Moreover, the fwhm of several experimental Raman bands, such as the bands at 772 and 1197 cm-1, that can show the microstructural quality of F16CuPc thin films, can also reflect the electron transport properties of F16CuPc-based TFTs. Moreover, the Davydov or crystal-field splitting cannot be observed in the Raman spectra of F16CuPc, indicating weak interactions between F16CuPc molecules. Therefore, the reorg and microstructural quality of the OSC films with weak intermolecular interactions, such as F16CuPc, are important in charge transport (CT).
In Part 2, poly(3-hexylthiophene) (P3HT) thin films were deposited from solvents with different boiling points (bp) to become the active layers of TFTs. Analyses of the microstructures of P3HT thin films through XRD as well as the fittings of absorption spectra, and electrical characteristics of the corresponding TFTs reveal that films made from high bp solvents, such as 1,2,4-trichlorobenzene, possess better microstructural quality than films from low bp solvents, such as chloroform, and thus produce better performance of TFTs, i.e., higher sat and larger IDSon. Then, the solution-processed polymer layers, poly(methyl methacrylate) (PMMA), were spin-coated on the top of various P3HT thin films to produce P3HT/PMMA bilayer films with semi-interpenetrating semiconducting/insulating microstructures. Examinations of the bilayer films using the spectroscopic methods (absorption, Raman, and XRD) reveal that the P3HT thin films from chloroform, which initially present poor microstructural quality and have some aggregate states, show a better thin-film microstructure after PMMA deposition. Thus, the enhanced IDSon and sat of TFTs compared with films from other high bp solvents are obtained. This result is attributed to the ability of P3HT aggregates to protect other more ordered P3HT chains from being seriously damaged or overly washed out during PMMA coverage. Meanwhile, P3HT aggregates can also resist the excessive interdiffusion of PMMA chains into the P3HT matrix to interrupt the pathways for CT. Furthermore, the introduction of PMMA chains into P3HT films can enhance the gate-to-channel control ability of TFTs, that is, the sharper SS behavior. Consequently, in contrast to single P3HT layer films, an appropriate quantity of PMMA interdiffusing into P3HT to create semi-interpenetrating semiconducting/insulating P3HT/PMMA bilayer films would not only lead to improved CT properties, but could also provide better switch on-off function of P3HT-based TFTs.
In Part 3, P3HT (electron donor) with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM, electron acceptor)were blended as active layers to fabricate bulk heterojunction solar cells. To locate the key factors that control photovoltaic properties of P3HT:PCBM solar cells, various microstructures in P3HT:PCBM blending films were created by altering the PCBM loading (fPCBM) in the blending films. The microstructures of films were investigated using spectroscopic methods, such as Raman, XRD, and fittings of absorption spectra. The microstructure-dependent electrical characteristics of the corresponding devices were also studied. With increasing fPCBM, the effective conjugation length (Leff) of P3HT chains in the crystalline portion is slightly increased, but the homogeneity of chain conformations remains almost unchanged. However, the addition of PCBM demonstrates a great impact on the amorphous portion of P3HT. In the films with fPCBM of 50 wt%, the Leff of amorphous P3HT chains is shorter and the homogeneity of P3HT chain conformations in the amorphous portion is poorer. These conditions imply that short Leff of amorphous P3HT chains are better mixed with PCBM to create lots of p-n contact areas. In addition, the difference of electron affinity (EA) and the built-in voltage (Vbi) between polythiophene and PCBM using DFT calculations were computed. Computational results show that shorter Leff of polythiophene interacting with PCBM can generate larger EA and Vbi, beneficial for exciton dissociation and production of larger output voltage of devices. Considering the electrical performance of devices, P3HT:PCBM solar cells with fPCBM of 50 wt% possess the larger short circuit current density and open circuit voltage as well as the highest fill factor and power conversion efficiency (PCE). Accordingly, aside from controlling the crystalline P3HT, the manipulation of the amorphous P3HT in the P3HT:PCBM blending films is also crucial in enhancing the PCE of solar cells.
論文目次 摘要 I
Abstract IV
誌謝 VII
Contents IX
Index of Tables XI
Index of Figures XII
Chapter 1 Introduction 1
1-1 Organic semiconductors 1
1-2 Research motivation 3
1-3 Thesis structure 5
1-4 Working mechanisms of devices 6
1-4-1 OTFTs 6
1-4-2 Organic solar cells 7
Chapter 2 Electron transport properties in F16CuPc-based thin-film transistors 15
2-1 Introduction 15
2-2 Experimental methods and theoretical calculations 17
2-2-1 Sample preparations 17
2-2-2 Device and thin film measurement 17
2-2-3 Quantum chemical calculations 18
2-3 Results and discussion 19
2-3-1 Electrical properties of F16CuPc-based OTFTs 19
2-3-2 Correlations between ET properties and structures of F16CuPc thin films by XRD and AFM 19
2-3-3 Vibrational modes and vibrational reorganization energy of an isolated F16CuPc molecule by DFT calculations 20
2-3-4 Joint experimental Raman spectra and theoretical vibrational modes in relation to ET properties of F16CuPc thin films 22
2-4 Conclusions 26
Chapter 3 Microstructural and hole transport properties in semi-interpenetrating semiconducting/insulating polymeric bilayer films-based thin-film transistors 42
3-1 Introduction 42
3-2 Experimental methods 44
3-2-1 Device fabrications 44
3-2-2 Thin film and device characterizations 44
3-3 Results and discussion 46
3-3-1 Microstructures of P3HT thin films without cover layers 46
3-3-2 Microstructures of P3HT thin films covered with PMMA 47
3-3-3 Electrical properties of P3HT and P3HT/PMMA TFTs 50
3-3-4 Correlations between microstructures in P3HT/PMMA bilayer films and electrical properties of corresponding TFTs 51
3-4 Conclusions 53
Chapter 4 Microstructure-dependent photovoltaic properties in polymer:fullerene bulk heterojunction solar cells 69
4-1 Introduction 69
4-2 Methods for experiments and theoretical calculations 71
4-2-1 Device preparations 71
4-2-2 Thin film and device measurement 71
4-2-3 Quantum chemical calculations 71
4-3 Results and discussion 73
4-3-1 Microstructural properties of various P3HT:PCBM thin films 73
4-3-2 Electrical characteristics of different P3HT:PCBM solar cells 76
4-3-3 Microstructure-dependent photovoltaic properties of various P3HT:PCBM solar cells 77
4-3-4 Roles of amorphous P3HT chains in the photovoltaic properties of P3HT:PCBM solar cells 78
4-3-5 An ideal structure of the active layers for polymeric BHJ solar cells 79
4-4 Conclusions 81
Chapter 5 Conclusions and outlook 100
Notes and references 102
Appendixes 115
A. List of abbreviations 115
B. List of symbols 117
List of publications 120
參考文獻 [1] D. Gamota, P. Brazis, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics, Kluwer Academic Publishers, Boston, 2004.
[2] M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys. 38, 2042-2043 (1963).
[3] G. Horowitz, “Organic field-effect transistors”, Adv. Mater. 10, 365-377 (1998).
[4] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev. Lett. 39, 1098-1101 (1977).
[5] Z. Bao, J. Locklin, Organic field-effect transistors, CRC Press, Boca Raton, FL, 2007.
[6] L. E. Polander, S. P. Tiwari, L. Pandey, B. M. Seifried, Q. Zhang, S. Barlow, C. Risko, J.-L. Brédas, B. Kippelen, S. R. Marder, “Solution-processed molecular bis-(naphthalene diimide) derivatives with high electron mobility”, Chem. Mater. 23, 3408-3410 (2011).
[7] C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, K. Tsukagoshi, “Solution-processable organic single crystals with bandlike transport in field-effect transistors”, Adv. Mater. 23, 523-526 (2011).
[8] B. Walker, A. B. Tamayo, X.-D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, T.-Q. Nguyen, “Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells”, Adv. Funct. Mater. 19, 3063-3069 (2009).
[9] Y. Matsuo, Y. Sato, T. Niinomi, I. Soga, H. Tanaka, E. Nakamura, “Columnar structure in bulk heterojunction in solution-processable three-layered p-i-n organic photovoltaic devices using tetrabenzoporphyrin precursor and silylmethyl[60]fullerene”, J. Am. Chem. Soc. 131, 16048-16050 (2009).
[10] C. Brabec, U. Scherf, V. Dyakonov, Organic photovoltaics: Materials, device physics, and manufacturing technologies, Wiley-VCH, Weinheim, 2008.
[11] Z. Kafafi, Organic Electroluminescence, Taylor & Francis, Boca Raton, FL, 2005.
[12] D. A. Bernards, G. G. Malliaras, R. M. Owens, Organic semiconductors in sensor applications, Springer-Verlag, Berlin, Heidelberg, 2008.
[13] A. Dodabalapur, “Organic and polymer transistors for electronics”, Mater. Today 9, 24-30 (2006).
[14] F. Gholamrezaie, S. G. J. Mathijssen, E. C. P. Smits, T. C. T. Geuns, P. A. van Hal, S. A. Ponomarenko, H.-G. Flesch, R. Resel, E. Cantatore, P. W. M. Blom, D. M. de Leeuw, “Ordered semiconducting self-assembled monolayers on polymeric surfaces utilized in organic integrated circuits”, Nano Lett. 10, 1998-2002 (2010).
[15] K.-J. Baeg, D. Khim, D.-Y. Kim, S.-W. Jung, J. B. Koo, I.-K. You, H. Yan, A. Facchetti, Y.-Y. Noh, “High speeds complementary integrated circuits fabricated with all-printed polymeric semiconductors”, J. Polym. Sci. Pt. B-Polym. Phys. 49, 62-67 (2011).
[16] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dötz, M. Kastler, A. Facchetti, “A high-mobility electron-transporting polymer for printed transistors”, Nature 457, 679-686 (2009).
[17] C. Melzer, H. von Seggern, “Organic field-effect transistors for CMOS devices”, Adv. Polym. Sci. 223, 213-257 (2010).
[18] D. Braga, G. Horowitz, “High-performance organic field-effect transistors”, Adv. Mater. 21, 1473-1486 (2009).
[19] Y. Wen, Y. Liu, “Recent progress in n-channel organic thin-film transistors”, Adv. Mater. 22, 1331-1345 (2010).
[20] Q. Meng, H. Dong, W. Hu, D. Zhu, “Recent progress of high performance organic thin film field-effect transistors”, J. Mater. Chem. 21, 11708-11721 (2011).
[21] J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, S. Ogawa, “Very high-mobility organic single-crystal transistors with in-crystal conduction channels”, Appl. Phys. Lett. 90, 102120-1-102120-3 (2007).
[22] C.-H. Wang, C.-Y. Hsieh, J.-C. Hwang, “Flexible organic thin-film transistors with silk fibroin as the gate dielectric”, Adv. Mater. 23, 1630-1634 (2011).
[23] H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, K. Müllen, “Ultrahigh mobility in polymer field-effect transistors by design”, J. Am. Chem. Soc. 133, 2605-2612 (2011).
[24] H. Bronstein, Z. Chen, R. S. Ashraf, W. Zhang, J. Du, J. R. Durrant, P. S. Tuladhar, K. Song, S. E. Watkins, Y. Geerts, M. M. Wienk, R. A. J. Janssen, T. Anthopoulos, H. Sirringhaus, M. Heeney, I. McCulloch, “Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices”, J. Am. Chem. Soc. 133, 3272-3275 (2011).
[25] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, “Solar cell efficiency tables (version 38)”, Prog. Photovolt: Res. Appl. 19, 565-572 (2011).
[26] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency”, Nature 459, 234-238 (2009).
[27] S. M. Sze, K. K. Ng, Physics of semiconductor devices, Wiley-Interscience, Hoboken, N.J., 2007.
[28] H. Klauk, Organic electronics: Materials, manufacturing and applications, Wiley-VCH, Weinheim, 2006.
[29] S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%”, Nat. Photonics 3, 297-303 (2009).
[30] N. Tessler, Y. Preezant, N. Rappaport, Y. Roichman, “Charge transport in disordered organic materials and its relevance to thin-film devices: A tutorial review”, Adv. Mater. 21, 2741-2761 (2009).
[31] G. Horowitz, “Tunneling current in polycrystalline organic thin-film transistors”, Adv. Funct. Mater. 13, 53-60 (2003).
[32] R. A. Street, D. Knipp, A. R. Völkel, “Hole transport in polycrystalline pentacene transistors”, Appl. Phys. Lett. 80, 1658-1660 (2002).
[33] A. D. Carlo, F. Piacenza, A. Bolognesi, B. Stadlober, H. Maresch, “Influence of grain sizes on the mobility of organic thin-film transistors”, Appl. Phys. Lett. 86, 263501-1-263501-3 (2005).
[34] R. Matsubara, N. Ohashi, M. Sakai, K. Kudo, M. Nakamura, “Analysis of barrier height at crystalline domain boundary and in-domain mobility in pentacene poly-crystalline films on SiO2”, Appl. Phys. Lett. 92, 242108-1-242108-3 (2008).
[35] M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors”, Appl. Phys. Lett. 81, 268-270 (2002).
[36] M. H. Choo, J. H. Kim, S. Im, “Hole transport in amorphous-crystalline-mixed and amorphous pentacene thin-film transistors”, Appl. Phys. Lett. 81, 4640-4642 (2002).
[37] D. Knipp, R. A. Street, A. Völkel, J. Ho, “Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport”, J. Appl. Phys. 93, 347-355 (2003).
[38] W. Y. Chou, Y. S. Mai, H. L. Cheng, C. Y. Yeh, C. W. Kuo, F. C. Tang, D. Y. Shu, T. R. Yew, T. C. Wen, “Correlation of growth of pentacene films at various gas ambience conditions to organic field-effect transistor characteristics”, Org. Electron. 7, 445-451 (2006).
[39] H. L. Cheng, Y. S. Mai, W. Y. Chou, L. R. Chang, “Influence of molecular structure and microstructure on device performance of polycrystalline pentacene thin-film transistors”, Appl. Phys. Lett. 90, 171926-1-171926-3 (2007).
[40] H.-L. Cheng, X.-W. Liang, W.-Y. Chou, Y.-S. Mai, C.-Y. Yang, L.-R. Chang, F.-C. Tang, “Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: Application to pentacene-based organic transistors”, Org. Electron. 10, 289-298 (2009).
[41] R. A. Marcus, “Electron transfer reactions in chemistry. Theory and experiment”, Rev. Mod. Phys. 65, 599-610 (1993).
[42] J.-L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, “Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: A molecular picture”, Chem. Rev. 104, 4971-5004 (2004).
[43] V. Coropceanu, J. Cornil, D. A. da S. Filho, Y. Olivier, R. Silbey, J.-L. Brédas, “Charge transport in organic semiconductors”, Chem. Rev. 107, 926-952 (2007).
[44] S. T. Bromley, M. Mas-Torrent, P. Hadley, C. Rovira, “Importance of intermolecular interactions in assessing hopping mobilities in organic field effect transistors: Pentacene versus dithiophene-tetrathiafulvalene”, J. Am. Chem. Soc. 126, 6544-6545 (2004).
[45] A. Datta, S. Mohakuda, S. K. Pati, “Comparing the electron and hole mobilities in the α and β phases of perylene: Role of π-stacking”, J. Mater. Chem. 17, 1933-1938 (2007).
[46] Z. Bao, A. J. Lovinger, J. Brown, “New air-stable n-channel organic thin film transistors”, J. Am. Chem. Soc. 120, 207-208 (1998).
[47] H. Peisert, M. Knupfer, T. Schwieger, G. G. Fuentes, D. Olligs, J. Fink, T. Schmidt, “Fluorination of copper phthalocyanines: Electronic structure and interface properties”, J. Appl. Phys. 93, 9683-9692 (2003).
[48] D. G. de Oteyza, E. Barrena, J. O. Ossó, H. Dosch, S. Meyer, J. Pflaum, “Controlled enhancement of the electron field-effect mobility of F16CuPc thin-film transistors by use of functionalized SiO2 substrates”, Appl. Phys. Lett. 87, 183504-1-183504-3 (2005).
[49] Y. Oh, S. Pyo, M. H. Yi, S.-K. Kwon, “N-type organic field-effect transistor using polymeric blend gate insulator with controlled surface properties”, Org. Electron. 7, 77-84 (2006).
[50] H. Klauk, U. Zschieschang, J. Pflaum, M. Halik, “Ultralow-power organic complementary circuits”, Nature 445, 745-748 (2007).
[51] Y.-W. Wang, C.-H. Yen, W.-Y. Chou, S.-J. Liu, H.-L. Cheng, “N-channel fluorinated copper phthalocyanine thin-film transistors utilizing oxygen-plasma-treatment ITO source and drain electrodes”, Proc. of SPIE 7054, 705416-1-705416-8 (2008).
[52] S. Ochiai, K. Sethuraman, K. Kojima, T. Mizutani, “Performance of an n-type organic field-effect transistor prepared with fluorinated copper phthalocyanine (F16CuPc) as an organic semiconductor and polycarbonate as a gate insulating material”, Proc. of SPIE 7054, 70540C-1-70540C-9 (2008).
[53] R. Ye, M. Baba, K. Suzuki, K. Mori, “Improved performance of fluorinated copper phthalocyanine thin film transistors using an organic pn junction: Effect of copper phthalocyanine film thickness”, Thin Solid Films 517, 3001-3004 (2009).
[54] J. O. Ossó, F. Schreiber, M. I. Alonso, M. Garriga, E. Barrena, H. Dosch, “Structure, morphology, and optical properties of thin films of F16CuPc grown on silicon dioxide”, Org. Electron. 5, 135-140 (2004).
[55] D. G. de Oteyza, E. Barrena, J. O. Ossó, S. Sellner, H. Dosch, “Thickness-dependent structural transitions in fluorinated copper-phthalocyanine (F16CuPc) films”, J. Am. Chem. Soc. 128, 15052-15053 (2006).
[56] T. Basova, E. Kol’tsov, A. Hassan, A. Tsargorodskaya, A. Ray, I. Igumenov, “Thin films of copper hexadecafluorophthalocyanine CuPcF16”, Phys. Status Solidi B-Basic Solid State Phys. 242, 822-827 (2005).
[57] E. Kol’tsov, T. Basova, P. Semyannikov, I. Igumenov, “Synthesis and investigations of copper hexadecafluorophthalocyanine CuPcF16”, Mater. Chem. Phys. 86, 222-227 (2004).
[58] S. M. Bayliss, S. Heutz, G. Rumbles, T. S. Jones, “Thin film properties and surface morphology of metal free phthalocyanine films grown by organic molecular beam deposition”, Phys. Chem. Chem. Phys. 1, 3673-3676 (1999).
[59] D. R. Tackley, G. Dent, W. E. Smith, “IR and Raman assignments for zinc phthalocyanine from DFT calculations”, Phys. Chem. Chem. Phys. 2, 3949-3955 (2000).
[60] D. R. Tackley, G. Dent, W. E. Smith, “Phthalocyanines: Structure and vibrations”, Phys. Chem. Chem. Phys. 3, 1419-1426 (2001).
[61] T. V. Basova, B. A. Kolesov, “Raman spectra of copper phthalocyanin: Experiment and calculation”, J. Struct. Chem. 41, 770-777 (2000).
[62] Z. Liu, X. Zhang, Y. Zhang, J. Jiang, “Theoretical investigation of the molecular, electronic structures and vibrational spectra of a series of first transition metal phthalocyanines”, Spectrochim. Acta, Part A-Molec. Biomolec. Spectr. 67, 1232-1246 (2007).
[63] W. Leng, A. M. Kelley, “Resonance hyper-Raman spectra of zinc phthalocyanine”, J. Phys. Chem. A 112, 5925-5929 (2008).
[64] J. O. Ossó, F. Schreiber, V. Kruppa, H. Dosch, M. Garriga, M. I. Alonso, F. Cerdeira, “Controlled molecular alignment in phthalocyanine thin films on stepped sapphire surfaces”, Adv. Funct. Mater. 12, 455-460 (2002).
[65] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.
[66] V. Coropceanu, J. M. André, M. Malagoli, J.-L. Brédas, “The role of vibronic interactions on intramolecular and intermolecular electron transfer in π-conjugated oligomers”, Theor. Chem. Acc. 110, 59-69 (2003).
[67] R. Ye, M. Baba, Y. Ohishi, K. Mori, K. Suzuki, “On the correlation between morphology and electronic properties of fluorinated copper phthalocyanine (F16CuPc) thin films”, Mol. Cryst. Liq. Cryst. 444, 203-210 (2006).
[68] J. I. Langford, A. J. C. Wilson, “Seherrer after sixty years: A survey and some new results in the determination of crystallite size”, J. Appl. Cryst. 11, 102-113 (1978).
[69] N. Kasai, M. Kakudo, X-ray diffraction by macromolecules, Springer, NY, 2005.
[70] P. F. Barbara, T. J. Meyer, M. A. Ratner, “Contemporary issues in electron transfer research”, J. Phys. Chem. 100, 13148-13168 (1996).
[71] O. Kwon, V. Coropceanu, N. E. Gruhn, J. C. Durivage, J. G. Laquindanum, H. E. Katz, J. Cornil, J.-L. Brédas, “Characterization of the molecular parameters determining charge transport in anthradithiophene”, J. Chem. Phys. 120, 8186-8194 (2004).
[72] H.-L. Cheng, Y.-S. Mai, W.-Y. Chou, L.-R. Chang, X.-W. Liang, “Thickness-dependent structural evolutions and growth models in relation to carrier transport properties in polycrystalline pentacene thin films”, Adv. Funct. Mater. 17, 3639-3649 (2007).
[73] A. S. Davydov, Theory of molecular excitons, McGraw-Hill, New York, 1971. The Dayvdov splitting arises from the strong intermolecular interactions between adjacent molecules with different orientations. Therefore, by using polarizations of incident and scattered light either parallel (x,x) or perpendicular (x,y) to each other, we could resolve the Davydov splitting of the intramolecular vibrational modes in the Raman spectroscopy.
[74] D. A. Tenne, S. Park, T. U. Kampen, A. Das, R. Scholz, D. R. T. Zahn, “Single crystals of the organic semiconductor perylene tetracarboxylic dianhydride studied by Raman spectroscopy”, Phys. Rev. B 61, 14564-14569 (2000).
[75] T. A. Skotheim, J. R. Reynolds, Conjugated polymers: Processing and applications, CRC Press, Boca Raton, FL, 2007.
[76] A. Facchetti, “Semiconductors for organic transistors”, Mater. Today 10, 28-37 (2007).
[77] S. S. Chang, A. B. Rodríguez, A. M. Higgins, C. Liu, M. Geoghegan, H. Sirringhaus, F. Cousin, R. M. Dalgleish, Y. Deng, “Control of roughness at interfaces and the impact on charge mobility in all-polymer field-effect transistors”, Soft Matter 4, 2220-2224 (2008).
[78] J.-F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Solling, M. Giles, I. McCulloch, H. Sirringhaus, “Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents”, Chem. Mater. 16, 4772-4776 (2004).
[79] H. Yang, T. J. Shin, L. Yang, K. Cho, C. Y. Ryu, Z. Bao, “Effect of mesoscale crystalline structure on the field-effect mobility of regioregular poly(3-hexyl thiophene) in thin-film transistors”, Adv. Funct. Mater. 15, 671-676 (2005).
[80] H. Sirringhaus, “Device physics of solution-processed organic field-effect transistors”, Adv. Mater. 17, 2411-2425 (2005).
[81] E. J. Meijer, C. Detcheverry, P. J. Baesjou, E. van Veenendaal, D. M. de Leeuw, T. M. Klapwijk, “Dopant density determination in disordered organic field-effect transistors”, J. Appl. Phys. 93, 4831-4835 (2003).
[82] B. A. Gregg, “Charged defects in soft semiconductors and their influence on organic photovoltaics”, Soft Matter 5, 2985-2989 (2009).
[83] H.-L. Cheng, W.-Q. Lin, F.-C. Wu, “Effects of solvents and vacancies on the electrical hysteresis characteristics in regioregular poly(3-hexylthiophene) organic thin-film transistors”, Appl. Phys. Lett. 94, 223302-1-223302-3 (2009).
[84] D. M. Russell, T. Kugler, C. J. Newsomea, S. P. Li, M. Ishida, T. Shimoda, “Dedoping of organic semiconductors”, Synth. Met. 156, 769-772 (2006).
[85] H. Ma, H.-L. Yip, F. Huang, A. K.-Y. Jen, “Interface engineering for organic electronics”, Adv. Funct. Mater. 20, 1371-1388 (2010).
[86] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwing, D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature 401, 685-688 (1999).
[87] T.-A. Chen, X. Wu, R. D. Rieke, “Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke zinc: Their characterization and solid-state properties”, J. Am. Chem. Soc. 117, 233-244 (1995).
[88] M. Kobashi, H. Takeuchi, “Inhomogeneity of spin-coated and cast non-regioregular poly(3-hexylthiophene) films. Structures and electrical and photophysical properties”, Macromolecules 31, 7273-7278 (1998).
[89] F. C. Spano, “Modeling disorder in polymer aggregates: The optical spectroscopy of regioregular poly(3-hexylthiophene) thin films”, J. Chem. Phys. 122, 234701-1-234701-15 (2005).
[90] F. C. Spano, “Absorption in regio-regular poly(3-hexyl)thiophene thin films: Fermi resonances, interband coupling and disorder”, Chem. Phys. 325, 22-35 (2006).
[91] J. Clark, C. Silva, R. H. Friend, F. C. Spano, “Role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene”, Phys. Rev. Lett. 98, 206406-1-206406-4 (2007).
[92] J. Clark, F. C. Chang, F. C. Spano, R. H. Friend, C. Silva, “Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy”, Appl. Phys. Lett. 94, 163306-1-163306-3 (2009).
[93] J. Gierschner, Y. S. Huang, B. V. Averbeke, J. Cornil, R. H. Friend, D. J. Beijonne, “Excitonic versus electronic couplings in molecular assemblies: The importance of non-nearest neighbor interactions”, J. Chem. Phys. 130, 044105-1-044105-6 (2009).
[94] W. J. Barford, “Exciton transfer integrals between polymer chains”, J. Chem. Phys. 126, 134905-1-134905-6 (2007).
[95] H.-L. Cheng, J.-W. Lin, F.-C. Wu, W.-R. She, W.-Y. Chou, W.-J. Shih, H.-S. Sheu, “Reformation of conjugated polymer chains toward maximum effective conjugation lengths by quasi-swelling and recrystallization approach”, Soft Matter 7, 351-354 (2011).
[96] R. Chang, J. H. Hsu, W. S. Fann, J. Yu, S. H. Lin, Y. Z. Lee, S. A. Chen, “Aggregated states of luminescent conjugated polymers in solutions”, Chem. Phys. Lett. 317, 153-158 (2000).
[97] K. Zhao, L. Xue, J. Liu, X. Gao, S. Wu, Y. Han, Y. Geng, “A new method to improve poly(3-hexyl thiophene) (P3HT) crystalline behavior: Decreasing chains entanglement to promote order-disorder transformation in solution”, Langmuir 26, 471-477 (2010).
[98] R. S. Ruoff, D. S. Tse, R. Malhotra, D. C. Lorents. “Solubility of fullerene (C60) in a variety of solvents”, J. Phys. Chem. 97, 3379-3383 (1993).
[99] J. Jaczewska, I. Raptis, A. Budkowski, D. Goustouridis, J. Raczkowska, M. Sanopoulou, E. Pamuła, A. Bernasik, J. Rysz, “Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters”, Synth. Met. 157, 726-732 (2007).
[100] H.-L. Cheng, J.-W. Lin, M.-F. Jang, F.-C. Wu, W.-Y. Chou, M.-H. Chang, C.-H. Chao, “Long-term operations of polymeric thin-film transistors: Electric-field-induced intrachain order and charge transport enhancements of conjugated poly(3-hexylthiophene)”, Macromolecules 42, 8251-8259 (2009).
[101] K. A. Welp, R. P. Wool, S. K. Satij, S. Pispas, J. Mays, “Dynamics of polymer interdiffusion: The ripple experiment”, Macromolecules 31, 4915-4925 (1998).
[102] F. Pierce, D. Perahia, G. S. Grest, “Interdiffusion of short chain oligomers into an entangled polymer film”, Macromolecules 42, 7969-7973 (2009).
[103] Q. Gu, X. Wang, P. Sun, D. Zhou, G. Xue, “Tracking the interdiffusion of polymers at a molecular level by 1H dipolar filter solid-state NMR under fast magic angle spinning”, Soft Matter 7, 691-697 (2011).
[104] M. Surin, P. Leclere, R. Lazzaroni, J. D. Yuen, G. Wang, D. Moses, A. J. Heeger, S. Cho, K. Lee, “Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors”, J. Appl. Phys. 100, 033712-1-033712-6 (2006).
[105] F. A. Yildirim, R. R. Schliewe, W. Bauhofer, R. M. Meixner, H. Goebel, W.Krautschneider, “Gate insulators and interface effects in organic thin-film transistors”, Org. Electron. 9, 70-76 (2008).
[106] M. M. Erwin, J. McBride, A. V. Kadavanich, S. J. Rosenthal, “Effects of impurities on the optical properties of poly-3-hexylthiophene thin films”, Thin Solid Films 409, 198-205 (2002).
[107] F.-C. Wu, H.-L. Cheng, C.-H. Yen, J.-W. Lin, S.-J. Liu, W.-Y. Chou, F.-C. Tang, “Electron transport properties in fluorinated copper-phthalocyanine films: Importance of vibrational reorganization energy and molecular microstructure”, Phys. Chem. Chem. Phys. 12, 2098-2106 (2010).
[108] X. Zhang, S. A. Jenekhe, “Electroluminescence of multicomponent conjugated polymers. 1. Roles of polymer/polymer interfaces in emission enhancement and voltage-tunable multicolor emission in semiconducting polymer/polymer heterojunctions”, Macromolecules 33, 2069-2082 (2000).
[109] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, “Processing additives for improved efficiency from bulk heterojunction solar cells”, J. Am. Chem. Soc. 130, 3619-3623 (2008).
[110] L. S. C. Pingree, O. G. Reid, D. S. Ginger, “Imaging the evolution of nanoscale photocurrent collection and transport networks during annealing of poly-thiophene/fullerene solar cells”, Nano Lett. 9, 2946-2952 (2009).
[111] A. J. Moulé, K. Meerholz, “Controlling morphology in polymer-fullerene mixtures”, Adv. Mater. 20, 240-245 (2008).
[112] J.-H. Huang, Z.-Y. Ho, D. Kekuda, Y. Chang, C.-W. Chu, K.-C. Ho, “Effects of nanomorphological changes on the performance of solar cells with blends of poly[9,9'-dioctyl-fluorene-co-bithiophene] and a soluble fullerene”, Nanotechnology 20, 025202-1-025202-9 (2009).
[113] C. Müller, T. A. M. Ferenczi, M. Campoy-Quiles, J. M. Frost, D. D. C. Bradley, P. Smith, N. Stingelin-Stutzmann, J. Nelson, “Binary organic photovoltaic blends: A simple rationale for optimum compositions”, Adv. Mater. 20, 3510-3515 (2008).
[114] W.-H. Baek, T.-S. Yoon, H. H. Lee, Y.-S. Kim, “Composition-dependent phase separation of P3HT:PCBM composites for high performance organic solar cells”, Org. Electron. 11, 933-937 (2010).
[115] J. Y. Kim, Y. Qin, D. M. Stevens, O. Ugurlu, V. Kalihari, M. A. Hillmyer, C. D. Frisbie, “Low band gap poly(thienylene vinylene)/fullerene bulk heterojunction photo-voltaic cells”, J. Phys. Chem. C 113, 10790-10797 (2009).
[116] R. P. Barber Jr., R. D. Gomez, W. N. Herman, D. B. Romero, “Organic photovoltaic devices based on a block copolymer/fullerene blend”, Org. Electron. 7, 508-513 (2006).
[117] W.-H. Baek, H. Yang, T.-S. Yoon, C. J. Kang, H. H. Lee, Y.-S. Kim, “Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells”, Sol. Energy Mater. Sol. Cells 93, 1263-1267 (2009).
[118] M. Dante, A. Garcia, T.-Q. Nguyen, “Three-dimensional nanoscale organization of highly efficient low band-gap conjugated polymer bulk heterojunction solar cells”, J. Phys. Chem. C 113, 1596-1600 (2009).
[119] E. M. J. Johansson, A. Yartsev, H. Rensmo, V. Sundström, “Photocurrent spectra and fast kinetic studies of P3HT/PCBM mixed with a dye for photoconversion in the near-IR region”, J. Phys. Chem. C 113, 3014-3020 (2009).
[120] M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends”, Nat. Mater. 7, 158-164 (2008).
[121] H. Kim, M. Shin, Y. Kim, “Distinct annealing temperature in polymer:fullerene:polymer ternary blend solar cells”, J. Phys. Chem. C 113, 1620-1623 (2009).
[122] J. H. Park, J. S. Kim, J. H. Lee, W. H. Lee, K. Cho, “Effect of annealing solvent solubility on the performance of poly(3-hexylthiophene)/methanofullerene solar cells”, J. Phys. Chem. C 113, 17579-17584 (2009).
[123] K. Tajima, Y. Suzuki, K. Hashimoto, “Polymer photovoltaic devices using fully regioregular poly[(2-methoxy-5-(3′,7′-dimethyloctyloxy))-1,4-phenylenevinylene]”, J. Phys. Chem. C 112, 8507-8510 (2008).
[124] J. Y. Kim, C. D, Frisbie, “Correlation of phase behavior and charge transport in conjugated polymer/fullerene blends”, J. Phys. Chem. C 112, 17726-17736 (2008).
[125] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, “For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%”, Adv. Mater. 22, E135-E138 (2010).
[126] S. Miller, G. Fanchini, Y.-Y. Lin, C. Li, C.-W. Chen, W.-F. Su, M. Chhowalla, “Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing”, J. Mater. Chem. 18, 306-312 (2008).
[127] C.-H. Chuang, Y.-Y. Lin, Y.-H. Tseng, T.-H. Chu, C.-C. Lin, W.-F. Su, C.-W. Chen, “Nanoscale morphology control of polymer/TiO2 nanocrystal hybrids: Photophysics, charge generation, charge transport, and photovoltaic properties”, J. Phys. Chem. C 114, 18717-18724 (2010).
[128] J. H. Park, J.-I. Park, D. H. Kim, J.-H. Kim, J. S. Kim, J. H. Lee, M. Sim, S. Y. Lee, K. Cho, “Enhanced device performance of organic solar cells via reduction of the crystallinity in the donor polymer”, J. Mater. Chem. 20, 5860-5865 (2010).
[129] S. Joshi, P. Pingel, S. Grigorian, T. Panzner, U. Pietsch, D. Neher, M. Forster, U. Scherf, “Bimodal temperature behavior of structure and mobility in high molecular weight P3HT thin films”, Macromolecules 42, 4651-4660 (2009).
[130] Y. Kanai, J. C. Grossman, “Insights on interfacial charge transfer across P3HT/fullerene photovoltaic heterojunction from ab initio calculations”, Nano Lett. 7, 1967-1972 (2007).
[131] C. F. N. Marchiori, M. Koehler, “Dipole assisted exciton dissociation at conjugated polymer/fullerene photovoltaic interfaces: A molecular study using density functional theory calculations”, Synth. Met. 160, 643-650 (2010).
[132] T. Yanai, D. P. Tew, N. C. Handy, “A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP)”, Chem. Phys. Lett. 393, 51-57 (2004).
[133] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.
[134] Even applying PCBM background correction to the spectra, we still observed similar trends in the Leff values of blending films with different fPCBM.
[135] J.-J. Yun, J. Peet, N.-S. Cho, G. C. Bazan, S. J. Lee, M. Moskovits, “Insight into the Raman shifts and optical absorption changes upon annealing polymer/fullerene solar cells”, Appl. Phys. Lett. 92, 251912-1-251912-3 (2008).
[136] T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C. J. Brabec, “Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells”, Adv. Funct. Mater. 15, 1193-1196 (2005).
[137] R. M. Beal, A. Stavrinadis, J. H. Warner, J. M. Smith, H. E. Assender, A. A. R. Watt, “The molecular structure of polymer-fullerene composite solar cells and its influence on device performance”, Macromolecules 43, 2343-2348 (2010).
[138] W. Yin, M. Dadmun, “A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: Rivers and streams”, ACS Nano 5, 4756-4768 (2011).
[139] N. D. Treat, M. A. Brady, G. Smith, M. F. Toney, E. J. Kramer, C. J. Hawker, M. L. Chabinyc, “Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend”, Adv. Energy Mater. 1, 82-89 (2011).
[140] T. J. Prosa, M. J. Winokur, J. Moulton, P. Smith, A. J. Heeger, “X-ray structural studies of poly(3-alkylthiophenes): An example of an inverse comb”, Macromolecules 25, 4364-4372 (1992).
[141] M. L. Chabinyc, M. F. Toney, R. J. Kline, I. McCulloch, M. Heeney, “X-ray scattering study of thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]-thiophene)”, J. Am. Chem. Soc. 129, 3226-3237 (2007).
[142] E. J. Spadafora, R. Demadrille, B. Ratier, B. Grévin, “Imaging the carrier photogeneration in nanoscale phase segregated organic heterojunctions by Kelvin probe force microscopy”, Nano. Lett. 10, 3337-3342 (2010).
[143] J.-H. Kim, J. H. Park, J. H. Lee, J. S. Kim, M. Sim, C. Shim, K. Cho, “Bulk heterojunction solar cells based on preformed polythiophene nanowires via solubility-induced crystallization”, J. Mater. Chem. 20, 7398-7405 (2010).
[144] S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen, M. Chhowalla, “Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells”, ACS Nano 4, 3169-3174 (2010).
[145] S. Günes, H. Neugebauer, N. S. Sariciftci, “Conjugated polymer-based organic solar cells”, Chem. Rev. 107, 1324-1338 (2007).
[146] P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, “Device physics of polymer:fullerene bulk heterojunction solar cells”, Adv. Mater. 19, 1551-1566 (2007).
[147] A. Kumar, H.-H. Liao, Y. Yang, “Hole mobility in optimized organic photovoltaic blend films obtained using extraction current transients”, Org. Electron. 10, 1615-1620 (2009).
[148] Unfortunately, because of the extensive computational resources required to conduct calculations when the geometry of polythiophene-PCBM systems with long chain polythiophenes is optimized, we were unable to conduct exhaustive calculations.
[149] S. Barth, H. Bässler, “Intrinsic photoconduction in PPV-type conjugated polymers”, Phys. Rev. Lett. 79, 4445-4448 (1997).
[150] L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, “Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells”, Appl. Phys. Lett. 88, 093511-1-093511-3 (2006).
[151] A. C. Mayer, R. S. Scully, B. E. Hardin, M. W. Rowell, M. D. McGehee, “Polymer-based solar cells”, Mater. Today 10, 28-33 (2007).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-10-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-10-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw