進階搜尋


下載電子全文  
系統識別號 U0026-0609201916134600
論文名稱(中文) 鋁粒子尺寸對於鋁/氧化銅奈米熱劑反應之影響
論文名稱(英文) Effects of Aluminum Particle Size on Al/CuO Nanothermite Reaction
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 羅與年
研究生(英文) Rodriguez Arthurs S A
電子信箱 rdrgz.28@gmail.com
學號 N16057130
學位類別 碩士
語文別 英文
論文頁數 78頁
口試委員 指導教授-吳明勳
口試委員-楊授印
口試委員-陳冠邦
中文關鍵字 Al / CuO  納米鋁  鋁粒徑  電泳  燒傷試驗  Schlieren  速度傳播  激光點火 
英文關鍵字 Al/CuO  Nanothermite  aluminum particle size  Electrophoresis  Burn test  Schlieren  Velocity Propagation  Laser ignition 
學科別分類
中文摘要 在這項研究中,一種開發納米線Al / CuO納米鋁熱劑的新方法已經在本土設計。第一部分是通過熱氧化製備氧化銅納米線。用鹽酸洗滌具有不同線徑的銅線材料並在丙酮中搖動。在選定的加熱條件下熱氧化後,通過掃描電子顯微鏡觀察氧化後的銅。

第二部分是研究電泳沉積方法。我們建立了自己的電泳裝置,利用銅線和同心芯銅管之間的電壓差產生圓柱坐標系的電場,可用於3:1乙醇/水溶液。納米鋁顆粒沉積在氧化銅納米線的間隙之間,並且在固定電場160V的固定持續時間10s上開髮用於電泳沉積方法(EPD)。

在此過程中,必須考慮各種重要因素和各種參數,例如鋁粒度,不同粒徑的Zeta電位,例如50, 70, 80和100nm。我們使用Quantranix Darvin Laser 527-50-M在納米熱線的底部尖端進行激光點火,激光源的功率可以通過控制系統控制,激光可以產生所需的熱量用於點火。利用紋影和高速相機可以觀察和研究Al / CuO納米鐵礦的各種粒徑的反應傳播。結果表明,納米熱線的速度傳播隨著粒徑的增加而減小,而不是較小的鋁粒徑。
英文摘要 In this research a novel approach of developing a nanowire Al/CuO Nano thermite has been indigenously designed The first part is to prepare the copper oxide nanowire by thermal oxidation. The copper wire materials with different wire diameters are washed with hydrochloric acid and shaken in acetone. After thermal oxidation under selected heating conditions, the copper after oxidation is observed by scanning electron microscope.

The second part is to study the electrophoretic deposition method. we built our own electrophoresis device, which uses the voltage difference between the copper wire and the copper tube of the concentric core to generate the electric field of the cylindrical coordinate system, which can be used in 3:1 ethanol/water solution. The nano aluminum particles are deposited between the gaps of the copper oxide nanowires, and developed for Electrophoretic deposition method (EPD) on fixed time duration 10s for the fixed electric field 160v.

During this process various significant factors and various parameters has to be in consideration such as the Aluminum Particle size, Zeta potential for different Particle diameters such as 50 ,70, 80 and 100 nm. We use quantranix Darvin Laser 527-50-M for laser ignition on the bottom tip of the nanothermite wire, the power of the laser source can be controlled by the control system, the laser can generate the required amount of heat for the ignition. The reaction propagation on various particle size of Al/CuO Nanothermite has been visualized and studied using schlieren and high speed camera. The result states that the velocity propagation of the nanothermite wire reduces with increasing particle size diameter than the smaller aluminum particle size.
論文目次 CONTENTS
ABSTRACT ………………..........................................................................................I
摘要 …………………………………………………………………………………..II
ACKNOWLEDGEMENT ………………………………………………………….III
CONTENTS …………………………………………………………………...…….IV
LIST OF TABLES…………………………………………………………..………VI
LIST OF FIGURES……………………………………………………………..…..IX
Chapter 1 Introduction……………………………………………………………..…..1
1.1 Motivation and Background ………………………………………………..3
1.2 Literature Survey………………………………………………………...….4
1.3 Objectives ……………………………………………………………..…9
Chapter 2 Methodology …………………………………………………………….....10
2.1 CuO Nanowire Preparation ……………………………………………………11
2.2 Zeta Potential and Particle Size measurement …………………………….…14
2.3 Electrophoretic Deposition………………………………………………….…16
2.4 Scanning Electron Microscopy …………………………………………...….23
2.5 Reaction Propagation Measurement…………………………………………...30
2.6 Aluminium Copper Oxide Nanowire Nanothermite synthesis…………….…..34
Chapter 3 CuO Nanowire Growth and Characterization………………………….…..37
3.1 Preparation of Copper Oxide Nanowire ……………………………………….37
3.2 Effect of Heating Rate…………………………………………………………38
Chapter 4 Electrophoresis Deposition of Aluminum Nanoparticle……………………43
4.1 Preparation of Nano Aluminum Particles…………………………………….43
4.2 Choosing a suitable pH for EPD……………………………………………...44
4.3 Zeta Potential………………………………………………………………...44
4.4 Electrophoretic Deposition synthesis setup………………………………….49
4.5 Effect of Electrophoresis voltage…………………………………………….50
4.6 Effect of Electrophoresis time………………………………………………..51
4.7 Nano Aluminium Powder filling density………………………………….…51
4.8 Morphology of Al/CuO Nanothermite ………………………………………52
Chapter 5 Burn Rate Measurements…………………………………………………..55
5.1 Laser Ignition setup……………………………………………………….....55
Conclusion…………………………………………………………………………….64
Future work…………………………………………………………………................69
References……………………………………………………………………………..70
Annexures……………………………………………………………………………..77













List of Figures

Figure 1.1. Nano Particle mixture……………………………………………………...1
Figure 2.1 Methodology…………………………………………………………..…..10
Figure 2.2 CuO nanowire copper oxide profile…………………………......………...12
Figure 2.3 Tender Furnace ……………………………………………………………13
Figure 2.4 (a) Interface potential and particle size meter and (b) Combination of electrode and sample cell…………………………………………………………….. 15
Figure.2.5 Schematic diagram of cylindrical coordinate electric field………………..17
Figure.2.6 (a)A combined cross-sectional view of the electrophoresis device and the copper wire, and (b) an isometric view of the electrophoresis cell…………………...18
Figure 2.7 Thin copper wire…………………………………………………………..19
Figure.2.8 An electrophoretic deposition apparatus for synthesizing a nanoheat agent………………………………………………………………………...…………20
Figure 2.9 circuit diagram of the electrophoresis control system and (b) actual attachment……………………………………………………………………………. 21
Figure 2.10 LabVIEW electrophoresis time control interface……………………...... 22
Figure 2.11 Scanning electron microscope and peripheral equipment………………..26
Figure 2.12 (a) Horizontal sample holder, (b) Vertical sample holder………………..28
Figure 2.13 (a) Conductor sample stage, (b) Non-conductor sample stage……….......29
Figure 2.14 shows the deflection of light through different media…………………....32
Figure 2.15 Schlieren development system schematic …………………………….…33
Figure 2.16 Vision Research Miro 310 Lab High Speed Camera…………………….34
Figure 3.1. diameter 75 μm copper wire after 600 °C, @ 10 °C /min 4-hour thermal oxidation (a) copper oxide surface, 2050 times, (b) copper oxide surface, 4500 times…………………………………………………………………………………...39
Figure 3.2 diameter 75 μm copper wire after 600 °C, @ 25 °C /min 4-hour thermal oxidation (a) copper oxide surface, 5200 times, (b) copper oxide surface, 2,300 times…………………………………………………………………………………...40
Figure 3.3. diameter 75 μm copper wire after 600 °C, @ 50 °C /min 4-hour thermal oxidation (a) copper oxide surface, 1500 times, (b) copper oxide surface,4300 times…………………………………………………………………………………...40
Figure 3.4 diameter 75 μm copper wire after 600 °C, @ 75 °C /min 4-hour thermal oxidation (a) copper oxide surface, 1500 times, (b) copper oxide surface, 1200 times……………………………………………………………….…………………..41
Figure 3.5. diameter 75 μm copper wire after 600 °C, @ 100 °C /min 4-hour thermal oxidation (a) copper oxide surface, 1500 times, (b) copper oxide surface, 480 times…………………………………………………………………………………...41
Figure 3.6. Effect of heating rate ……………………………………………………..42
Figure 4.1 Zeta potential vs pH………………………………………………………..44
Figure 4.2 Zeta potential vs pH……………………………………………………..…48
Figure 4.3 SEM study for the 50nm particle diameter for 10s for 160 V electric field……………………………………………………………………………………53
Figure 4.4 SEM study for the 70nm particle diameter for 10s for 160 V electric field……………………………………………………………………………………54
Figure 4.5 SEM study for the 8nm particle diameter for 10s for 160 V electric field……………………………………………………………………………………54
Figure 4.6 SEM study for the 70nm particle diameter for 10s for 160 V electric field……………………………………………………………………………………55
Figure 5.1 (a) High Speed camera setup for burn test ……………………………......58
Figure 5.2 (a) High Speed camera setup for burn test (b) nanothermite test rig……....58
Figure 5.3 Burn test for 50nm nanothermite reaction for 10 s for 160V applied Electric field the interval for each frame was 40 ms…………………………………………...59
Figure 5.4 Burn test for 50nm nanothermite reaction for 10 s for 160V applied Electric field the interval for each frame was 40 ms…………………………………………...…..59
Figure 5.5 Burn test for 70nm nanothermite reaction for 10 s for 160V applied Electric field the interval for each frame was 40 ms…………………………………………...59
Figure 5.6 Burn test for 70nm nanothermite reaction for 10 s for 160V applied Electric field the interval for each frame was 40 ms…………………………………….……..60
Figure 5.7 Burn test for 80nm nanothermite reaction for 10 s for 160V applied Electric field the interval for each frame was 40 ms………………………………………...…61
Figure 5.8 Burn test for 80nm nanothermite reaction for 10 s for 160V applied Electric field the interval for each frame was 40 ms……………………………………….…..61
Figure 5.9 Burn test for 100nm nanothermite reaction for 10 s for 160V applied Electric field the interval for each frame was 40 ms……………………….................62
Figure 5.10 Burn test for 100nm nanothermite reaction for 10 s for 160V applied Electric field the interval for each frame was 40 ms……………………………...…..60
Figure 5.11 Plot for Time vs Distance for various particle size………………………62
Figure 5.12 Plot for Velocity vs Time for various particle size……………………….62
Figure 5.11 plot for Velocity Propagation (cm/s) for different particle size (nm)……65









List of Tables

Table:2.1 Specifications of interface potential and particle size measuring instrument………………………………………………………………………...…15
Table 2.2 Desktop Scanning Electron Microscope Specifications…………………27
Table 2.3 Vision Research Miro 310 Lab High Speed Camera Specifications….…34
Table 4.1 Effect of Ethanol concentration without Acetic Acid ………………..….42
Table 4.2 Stability of suspension with relation to Zeta potential………………. ….47
Table 4.3 Effect of Ethanol concentration with Acetic acid on the solution………..47
參考文獻 [1]. E.L. Dreizin, “Metal-based Reactive Nanomaterials,” Progress in Energy and Combustion Science, 35, 2009.
[2]. R.J. Jouet, J.R. Carney, R.H. Granholm, H.W. Sandusky, A.D. Warren, “Preparation and Reactivity Analysis of Novel Perfluoroalkyl Coated AluminumNanocomposites,” Material Science and Technology, 22, 422, 2006.
[3]. W.L. Perry, B.L. Smith, C.J. Bulian, J.R. Busse, C.S. Macomber, R.C. Dye, S.F. Son,“Nano-Scale Tungsten Oxides for metastable intermolecular Composites, “Propellants, Explosives, Pyrotechnics, 29, 99, 2004.
[4]. W.C. Danen, B.S. Jorgensen, J.R. Busse, M.J. Ferris, B.L. Smith, Los Alamos Nano energetic Metastable Intermolecular Composite (Super Thermite) Program, Abstracts of Papers, 221st ACS National Meeting, CA, United States,April 1-5, 2001.
[5]. S.F. Son, M.A. Hiskey, D.L. Naud, J.R. Busse, B.W., Asay, “Lead-Free Electric Matches,” Proceedings of the 29th International Pyrotechnics Seminar, Defence Science and Technology Organisation, Pyrotechnics Group, 2002.
[6]. A. Prakash, A.V. McCormick, M.R. Zachariah, “Synthesis and Reactivity of a SuperReactive Metastable Intermolecular Composite Formulation of Al/KmnO4,”Advanced Materials, 17, 900, 2005.
[7]. E.L. Dreizin, M. Schoenitz, Nano-Composite Energetic Powders Prepared by Arrested Reactive Milling, US Patent Application 20060053970, 2006.
[8]. M. Schoenitz, T.S. Ward, E.L. Dreizin, “Fully Dense Nano-Composite Energetic Powders Prepared By Arrested Reactive Milling,” Proceedings of the Combustion Institute, 30, 2071, 2005.
[9]. S.M. Umbrajkar, M. Schoenitz, E.L. Dreizin, “Control of Structural Refinement and Composition in Al-MoO3 Nanocomposites Prepared by Arrested Reactive Milling,” Propellants, Explosives, Pyrotechnics, 31, 382, 2006.

[10]. K.C. Walter, D.R., Pesiri, D.E. Wilson, “Manufacturing and Performance of Nanometric Al-MoO3 Energetic Materials,” Journal of Propulsion and Power, 23, 4, 2007. [11]. S.H. Fischer and M.C. Grubelich, Theoretical energy release of thermites, intermetallic, and combustible metals, 24th International Pyrotechnics Seminar, Monterey, CA, USA, 1998.
[12] S.H. Fischer and M.C. Grubelich, Theoretical energy release of thermites, intermetallic, and combustible metals, 24th International Pyrotechnics Seminar, Monterey, CA, USA, 1998.
[13] R.A. Yetter, G.A. Risha, and S.F. Son (2009), Metal particle combustion and nanotechnology, Proceedings of the Combustion Institute 32, 1819-1838
[14] S.F. Son, T.J. Foley, R.A. Yetter, M.H. Wu, and G.A. Risha (2007), Combustion of Nanoscale Al/MoO3 Thermite in Microchannels, Journal of Propulsion and Power 23(4), 715-721
[15]. H. Wang, G. Jian, G.C. Egan, M.R. Zachariah (2014), Assembly and reactive properties of Al/CuO based nanothermite microparticles, Combustion and Flame 161, 2203-2208
[16]. H. Wang, J.B. DeLisio, G. Jian, W. Zhou, and M.R. Zachariah (2015), Electrospray formation and combustion characteristics of iodine-containing Al/CuO nanothermite microparticles, Combustion and Flame 162, 2823-2829
[17]. K. Zhang, C. Rossi, G.A.A. Rodriguez, C.Tenailleau, and P. Alphonse (2007), Development of a nano-Al/CuO based energetic material on silicon substrate, Applied Physics Letters 91, 113117
[18]. M. Petrantoni, C. Rossi, V. Conedera, D. Bourrier, P. Alphonse, and C.Tenailleau (2010), Synthesis process of nanowired Al/CuO thermite, Journal of Physics and Chemistry of Solids 71, 80-83
[19]. K. Zhang, C. Rossi, M. Petrantoni, and N. Mauran (2008), A nano initiator realized by integrating Al/CuO-based nanoenergetic materials with a Au/Pt/Cr Microheater, Journal of Microelectromechanical Systems, 17(4), 832-836
[20]. V.K. Patel, and S. Bhattacharya (2013), High-Performance Nanothermite Composites Based on Aloe-Vera-Directed CuO Nanorods, ACS Applied Material and Interfaces 5, 13364-13374



[21]. S. Apperson, R.V. Shende, S. Subramanian, D. Tappmeyer, S. Gangopadhyay, Z. Chen, K. Gangopadhyay, P. Redner, S. Nicholich, and D. Kapoor (2007), Generation of fast propagating combustion and shock waves with copper oxide/aluminum nanothermite composites, Applied Physics Letters 91, 243109
[22] Electrophoretic Deposition of Carbon Nanotubes on Heat Spreader for Fabrication of Thermal Interface Materials (TIM)Control of colloid stability through zeta potential: Raihana Bahru, Abdul Rahman Mohamed*, Wei-Ming Yeoh & Khatijah Aisha Yaacob Sains Malaysiana 46(7)(2017): 1075–1082
[23] Silver Colloids, Do they Work ?, By Ronald J. Gibbs and Newark , DE 19711
[24] K. Lee, D. Kim, J. Shim, S. Bae , D.J. Shin, B.E. Treml, J. Yoo, T. Hanrathd, W.Dong Kim, and D.C. Lee (2015), Formation of Cu layer on Al nanoparticles during thermite reaction in Al/CuO nanoparticle composites: Investigation of off-stoichiometry ratio of Al and CuO nanoparticles for maximum pressure change, Combustion and Flame 162, 3823-3828
[25] R.A. Williams, M. Schoenitz, A. Ermoline, and E.L. Dreizin (2014), Low-temperature exothermic reactions in fully-dense Al/MoO3 nanocomposite powders, Thermochimica Acta 594, 1-10
[26] G. Filipic, and U. Cvelbar (2012), Copper oxide nanowires: a review of growth, Nanotechnology 23, 1-16
[27]. K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang (2014), CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications, Progress in Materials Science 60, 208-337
[28]. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, and J. Chane-Ching (2007), Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate, Nanotechnology 18, 275607
[29] Kumar, A.K. Srivastava, P. Tiwari, and R.V. Nandedkar (2004), The effect of growth parameters on the aspect ratio and number density of CuO nanorods, Journal of Physics: Condensed Matter 16, 8531-8543
[30]. T. Chena, F. Zhang, J. Wanga, G.A. Zhang, B.B. Miaoa, X.Y. Fan, D. Yana, and P.X. Yan (2008), CuO nanowires synthesized by thermal oxidation route, Journal of Alloys and Compounds 454, 268-273
[31].Y.C. Chiang & M.H. Wu (2016) Assembly and reaction charactezation of a novel thermite consisting aluminum nanoparticles and CuO nanowires. Proceedings of the Combustion Institute, 36(3), 4201-4208.
[32]. Tuning the morphological, ignition and combustion properties of micron-Al/CuO thermites through different synthesis approaches, Deng Sili, Jiang Yue, Huang Sidi, Shi Xinjian, Zhao Jiheng, Zheng Xiaolin Combustion and Flame, Vol 195, September 2018, Pages 303-310
[33] Reaction mechanism of Al-CuO nanothermites with addition of multilayer graphene Jinpeng Shen, Zhiqiang Qiao, Jun Wang, Jin Chen, Guangcheng Yang Thermochimica Acta Volume 666, 10 August 2018, Pages 60-65
[34] Ignition and Combustion Characterization of Nano-Al-AP and Nano-Al-CuO-AP Micro-sized Composites Produced by Electrospray Technique
Huabing Wang, Michael R Zachariah, G Anitha RaoPublished 2015
[35] Effects of fuel and oxidizer particle dimensions on the propagation of aluminum containing thermites, Proceedings of the Combustion Institute
Volume 33, Issue 2, 2011, Pages 1989-1996
[36] Laser ignition of nanocomposite thermites , John J.GranierMichelle L.Pantoya, Combustion and Flame Volume 138, Issue 4, September 2004, Pages 373-383

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw