進階搜尋


下載電子全文  
系統識別號 U0026-0609201623424300
論文名稱(中文) 利用動力學模擬粒子被靜電離子聲震波加速之行為
論文名稱(英文) Kinetic simulation of particle acceleration by electrostatic ion acoustic shock
校院名稱 成功大學
系所名稱(中) 太空與電漿科學研究所
系所名稱(英) Institute of Space and Plasma Sciences
學年度 104
學期 2
出版年 105
研究生(中文) 蘇福生
研究生(英文) Fu-Sheng Su
學號 LA6031027
學位類別 碩士
語文別 英文
論文頁數 64頁
口試委員 指導教授-西村泰太郎
口試委員-河森榮一郎
口試委員-藏滿康浩
中文關鍵字 粒子網格法模擬  正電離子聲震波  蘭道阻尼隨時間消散  粒子加速 
英文關鍵字 Particle-in-Cell simulation  Ion acoustic shock wave  Landau damping as temporal dissipation  Particle acceleration 
學科別分類
中文摘要 利用粒子網格法(Particle-in-Cell法)模擬正電離子聲震波。探討並分析磁聲震波和正電離子聲震波的差別。此外還以馬赫數和密度不連續性為基準去討論正電離子聲孤立波和正電離子聲震波的差別。討論了利用網格法模擬的結果,第一,建立了Langmuir wave動力學的基準,第二,在網格法模擬中加入正電離子來產生正電離子聲波。基於基準,在初始速度中加入了飄移速度,且飄移速度超過聲速。利用KdV方程式去對非線性和分散作用進行了討論而在粒子網格法模擬中也作了同樣的分析。在產生震波的部分,我們利用電漿鞘來當邊界,且利用兩種方法來產生密度不連續性和正電離子聲震波。其中一個方法是通過利用電漿鞘來反射正電離子,而另一個方法是利用兩道正電離子束打向相反方且對著彼此。而在這個研究中我們專注在電場的詳細生成機制和粒子的加速機制,用來了解那些在破壞性的太陽事件中帶電粒子的加速方式。
英文摘要 Ion acoustic shock waves by self-consistent Particle-in-Cell (PIC) simulation is studied. The difference and the analogy between magnetosonic shock waves and ion acoustic shock waves are discussed. Furthermore, the threshold between ion acoustic solitons and the shock waves is discussed in terms of Mach number and density discontinuities. The PIC simulation results are discussed, first for the benchmark of Langmuir wave dynamics, and second for ion acoustic wave dynamics by incorporating ions into the PIC code. Based on the benchmark, initial drift velocity of ions which exceeds the sound speed is incorporated. Employing KdV equation, roles of the nonlinearity and dispersion is discussed which is also revisited in PIC simulation. For the shock generation, we take advantage of plasma sheath near a fixed boundary. Two methods to create the density discontinuity and generate the ion acoustic shocks are taken. One is by utilizing the sheath and reflected ions, and the other is by collision of two ion beams moving in the opposite directions. We focus on the detailed generation mechanism of the electric field, and particle acceleration mechanism in this study, aiming at understanding of charged particle acceleration observes at disruptive solar events.
論文目次 摘要 I
Abstract II
List of Figures IV
Chapter 1 Introduction 1
1.1 Background and Motivation 1
Chapter 2 Theoretical models 4
2.1 Difference and analogy between magnetosonic wave and ion acoustic wave 4
2.2 Threshold between ion acoustic shock waves and ion acoustic solitons 11
2.3 Demonstration of Fermi acceleration by a point mass model 18
Chapter 3 Particle-in-Cell Simulation 21
3.1 Vlasov-Poisson System and its normalization 22
3.2 Initial loading of particles 23
3.3 Gathering Particles 25
3.4 Solving Poisson Equation 26
3.5 Time Advancing Particles 28
3.6 Benchmark of Landau damping with Vlasov simulation 29
Chapter 4 Simulation Results 32
4.1 Analysis of linear ion acoustic wave 32
4.2 Relation of KdV equation and ion acoustic solitons demonstrated by PIC method 34
4.3 Two simulation models of electrostatic ion acoustic shocks 38
4.3-1 Shock simulation utilizing plasma sheath formation and ion reflection 39
4.3-2 Electrons having the same drift velocity as the ions 52
4.3-3 Two shocks moving in the opposite directions 55
4.4 Discussion on Fermi acceleration of electrons 58
Chapter 5 Summary and Future work 60
References 62
參考文獻 1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. (Dover, New York, 1970), p. 933.
2. A. Balogh and R. A. Treumann, Physics of Collisionless Shocks: Space Plasma Shock Waves. (Springer, New York, 2013), p. 333.
3. C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation. (IoP publishing, Bristol, 1986), p.13.
4. I. B. Bernstenin, J. M. Greene, and M. D. Kruskal, “Exact Nonlinear Plasma Oscillations”, Phys. Rev. 108, 546 (1957).
5. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed. (Plenum, New York, 1974), pp. 127-130, pp. 249-254.
6. D. W. Forslund and C. R. Shonk, “Formation and Structure of Electrostatic Collisionless Shocks”, Phys. Rev. Lett. 25, 25 (1970).
7. D. W. Forslund and J. P. Freidberg, “Theory of Laminar Collisionless Shocks”, Phys. Rev. Lett 1189, 18 (1971).
8. C. W. Huang, Y. C. Chen, and Y. Nishimura, “Particle-in-Cell Simulation of Plasma Sheath Dynamics With Kinetic Ions”, IEEE Transactions on Plasma Science 43, 675 (2015); C. W. Huang, “Particle-In-Cell Simulation of Asymmetric Secondary Electron Emission in Plasma Processing”, Master’s thesis, National Cheng Kung University, 2014 (unpublished); Y. C. Chen, “Particle-In-Cell Simulation of Asymmetric Secondary Electron Emission in Plasma Processing”, ibid, 2014 (unpublished); T. L. Lin, “Particle-In-Cell Simulation of Two Dimensional Trench Geometry in Capacitively Coupled Plasma”, ibid, 2015 (unpublished).
9. M. Hoshino, “Nonthermal electrons at high Mach number shocks: electron shock surfing acceleration”, Astrophysical Journal 572, 880 (2002).
10. Y. Inoue and H. Takabe, “The condition of the formation of ion acoustic shock waves made by HeII plasma”, Annual Progress report of Institute of Laser Engineering, Osaka University, 151, 2006 (unpublished).
11. D. J. Korteweg and G. de Vries, “On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves”, Philosophical Magazine 39, 422 (1895).
12. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, 2nd ed. (Springer, Berlin, 1995), p. 96.
13. A. J. Lichtenberg and M.A. Liebermann, Regular and Chaotic Dynamics, 2nd ed. (Springer, New York, 1992), p. 57.
14. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. (John Wiley and Sons, Hoboken, 2005), p. 167.
15. T. Liseykina, G. Dudnikova, V. Vshivkov, M. Malkov, “Ion-acoustic shocks with reflected ions: modeling and PIC simulations”, Journal of Plasma Physics 81, 5 (2015).
16. D. R. Nicholson, Introduction to Plasma Theory, 2nd ed. (Krieger, Melbourne, 1992), pp. 138-141, pp. 164-165, pp. 171-177.
17. Y. Ohsawa, “Ultratelativistic particle acceleration in collisionless shock waves” Physics Reports 536, 149 (2014).
18. D.V. Reames, “Particle Acceleration by CME-Driven Shock” NASA report, 1999 (unpublished).
19. W. J. M. Rankine, “On the thermodynamic theory of waves of finite longitudinal disturbances”, Philosophical Transactions of the Royal Society of London 160, 277 (1870).
20. M. Scholer, K. J. Trattner and H. Kucharek, “Ion injection and Fermi acceleration at earth's bow shock” Astrophysical Journal 395, 657 (1984).
21. R. Z. Sagdeev, “Cooperative Phenomena and Shock Waves in Collisionless Plasmas”, Reviews of Plasma Physics 4, 23 (1966).
22. D. A. Tidman and N. A. Krall, Shock waves in collisionless plasmas. (Wiley, New York, 1970), pp. 99-106.
23. M. Toida and Y. Ohsawa, “Simulation studies of acceleration of heavy ions and their elemental compositions”, Solar Physics 171, 161 (1997).
24. R. A. Treumann, Advance Space Plasma Physics. (Imperial College Press, London, 1997), p. 75.
25. N. J. Zabusky and M. D. Kruskal, “Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States”, Phys. Rev. Lett. 15, 240 (1965).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-09-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw