進階搜尋


下載電子全文  
系統識別號 U0026-0609201507265800
論文名稱(中文) 擴增實境互動模型於教育之應用
論文名稱(英文) Augmented Reality Interaction Model in Educational Applications
校院名稱 成功大學
系所名稱(中) 工業設計學系
系所名稱(英) Department of Industrial Design
學年度 103
學期 2
出版年 104
研究生(中文) 蘇俊欽
研究生(英文) Chun-Chin Su
電子信箱 chunchinsu@gmail.com
學號 P38931092
學位類別 博士
語文別 英文
論文頁數 76頁
口試委員 口試委員-吳豐光
口試委員-賴新喜
口試委員-張育銘
口試委員-陳國祥
口試委員-鄭泰昇
指導教授-陳建旭
中文關鍵字 擴增實境  實體操作介面  實體擴增實境界面  電腦輔助學習 
英文關鍵字 Augmented Reality  Tangible User Interface  Tangible Augmented Reality  computer assisted learning 
學科別分類
中文摘要 隨著資訊技術的進步並且廣泛的應用到學習環境中,學習的體驗逐步被增強且擴充。在這些數位化的趨勢裡,透過輔助的軟硬體,來學習如何展現它們的創意與同儕之間的合作。擴增實境是一個嶄新的互動介面科技與概念,在跨越真實與虛擬的世界中,整合了擬真的虛擬資訊與豐富的互動性,提供了豐富且吸引人的學習環境。

在許多教育的擴增實境應用設計上,會針對學習的內容與互動操作上的議題進行相關的設計;例如如何將原本不可見的物體或是化學反應現象透過擴增實境本身所能提供的媒體特性,透過互動操作讓這些視覺化內容可以有效的引導學習過程。 然而;仍然缺少了一個有系統的設計框架,提供給相關的系統開發者,作為開發上的思考依據。本研究提出了一個新的擴增實境互動模型,這個互動設計框架從使用者如何操作與識認這些擴增實境互動介面上的物件的角度,重新定義這些兼具實體存在意義與疊合虛擬資訊的操作介面,作為開發AR教育應用系統上的參考。除了延續了擴增實境與實體操作介面的特性外,在擴增實境的操作環境中,實體物件的物理本質仍被保留,例如物體本身的大小尺寸。這互動框架重新建立在虛擬世界中,作為操作介面的實體物件本身與本身在真實世界中所具備存在意義的關聯性。這個框架定義了作為擴增實境操作介面可以具備三個主要面向;功能性的存在,物理性的存在,以及符號性的存在。

在本研究裡,介紹了在這個互動架構下擴增實境在教育學習上的應用。這些應用在互動介面上採用了實體互動介面的概念,透過實體物件作為操作介面,從物體存在於真實世界中的三個面向屬性去設計相關的互動操作,在擴增虛擬的環境中延伸空間實體物件的定義。在這些例子裡,互動的介面架構在符號卡片或是實際的對應物件上,例如;真實的金屬。透過符號的比對,角度跟位置上的計算,以及物體本身的屬性變化判斷來定義系統的互動回饋。

在擴增實境未來的應用發展趨勢,隨著影像辨識技術與相關科技的發展,AR虛擬的資訊幫助學習者與應用系統建立更緊密的結合,虛擬的擴增資訊與真實世界不再有明顯的界線。相較於以往所提的擴增實境應用,與使用者操作環境有更緊密的結合關係,操作的方式也提供更多元的輸入方式;例如手部姿勢的判斷。而擴增資訊的顯示會根據不同的操作情境標註在不同的實體物件上。被賦予相對應的操作方式與介面。本研究所提出的互動框架,可以在這個未來的趨勢下提供相關教育應用開發上的參考。
英文摘要 With advanced information technologies widely embedded into learning environment, the learning experience has been augmented. Amongst these digital trends, children learn how to present their creative ideas and collaborate with peers using supportive hardware and software. Augmented Reality (AR), a novel interface technology, combines both interactive and realistic renderings which better introduce narrative content and support the impressive fusion of boundaries between real and virtual worlds. AR unveils the potential on creating rich and fantastical learning environments.

Many of AR’s educational implications are designed based on the learning content and the subjects of interactive instructions; for example, how AR’s medium features provided effectively guide the learning process, visualizing the invisible objects or chemical reactions through interactive instructions. However, there has been lacked of a methodical design framework providing to the system developers as the references of thinking. This study proposes a framework of AR’s interactive model. The interactive model re-defines the operational interface which combines the existing meaning of the tangible objects and the coincidence of the virtual information from the users’ perspective through their operations and their knowledge upon the objects in the AR interactive interface. The model will be contributed as a reference to the development of AR’s educational implication system.

Apart from the interactive concepts of AR and TUI, in the operation of AR environments, the physical objects’ physical properties are also kept; such as the size of the object. This aims to build the connection of the physical properties these physical objects have in the real world. The model makes a definition of the physical object which serves as an AR interface including functional representation, physical representation and symbolic representation.

In this study, the research introduces current AR education applications based on mentioned interaction framework. In those examples which adopt from the idea of Tangible Augmented Reality, the interaction based on the three perspectives; functional representation, physical representation and symbolic representation, where the definition of tangible objects was extended in AR environment. On the definition of manipulation, it endures manipulation interaction through symbol comparison, physical attributes comparison and angle or position of the card object. Those applications address the assistance AR provides to users on the learning of interface manipulation or abstract contents.

In the future developments of AR, As the development of the image recognition and relevant technologies evolve, AR builds a tighter connection between the learners and the implication system with its virtual information provided. The boundary between the real world and the virtual coincidence of information has been blurred. AR integrates the user’s manipulation of the environment more closely than the previous AR applications. More diverse manipulation methods are provided as well, such as determining the gestures of the hand. Augmented information will be displayed differently on physical objects depending on the context of the manipulation, and provides corresponding manipulation and interface. The interaction discipline provided by this study acts as a reference for the development of educational applications.
論文目次 Abstract I
Table of Contents V
List of Figures VII
Chapter 1 Introduction 1
1.1 Augmented Reality & its benefits to Education Applications 2
1.2 Thesis Structure 6
1.3 Thesis Overview 8
Chapter 2 Literature review 12
2.1 About Augmented Reality 12
2.2 The benefits of Augmented Reality treatment on learning 15
2.3 Tangible interaction in Augmented Reality 17
Chapter 3 Augmented Reality interaction model 19
3.1 The interaction in AR application 21
3.2 The extension from interaction model of TUI 25
3.3 Interaction model of Augmented Reality 27
Chapter 4 The AR educational applications based on AR interaction model 32
4.1 Applications based on symbolic meaning 34
4.1.1 Augmented Reality Chinese alphabet learning application 34
4.1.1.1 System Design 36
4.1.1.2 Structure of system 38
4.1.1.3 User feedbacks 39
4.1.2 Augmented Reality anatomy learning application 40
4.1.2.1 System Design 40
4.1.2.2 Structure of system 41
4.1.2.3 User feedbacks 43
4.2 Application based on functional meaning 44
4.2.1 Augmented Reality product interface touring application 44
4.2.1.1 System Design 45
4.2.1.2 Structure of system 46
4.2.1.3 User feedbacks 47
4.3 Application based on physical meaning 49
4.3.1 Augmented Reality painting application 49
4.3.1.1 Overview of painting system 51
4.3.1.2 System Design 53
4.3.2 Algorithm 54
4.3.2.1 Sketch segmentation 54
4.3.2.2 Contour analysis 56
4.3.2.3 Stroke and filter definition 57
4.3.2.4 Depth assignment & rendering 58
4.3.3 User feedbacks 59
4.3.4 Findings 61
Chapter 5 Perspectives & Conclusions 64
5.1 Perspectives 64
5.2 Conclusions 69
Reference 71
參考文獻 Abasa, H., & Zamanb, H. B. (2009). Reading Discrepency and the Promise of Computer Technology. Proceedings of the International Conference on Computing and Informatics.
Almgren, J., Carlsson, R., Erkkonen, H., Fredriksson, J., Møller, S., Rydgård, H., Österberg, M., Bötschi, K., Voegtli, B., & Fjeld, M. (2005). Tangible User Interface for Chemistry Education: Visualization, Portability, and Database. Proceedings of SIGRAD, 19-24.
Azuma, R. (1997). A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments, 6(4), 355-385.
Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. Computer Graphics and Applications, 21(6), 34-47.
Billinghurst, M. (2003), Augmented reality in education. New Horizons in Learning, 9(1).
Billinghurst, M. (2013). Hands and speech in space: Multimodal interaction with augmented reality interfaces. Proceedings of the 15th ACM on International Conference on Multimodal Interaction, 379-380.
Billinghurst, M., & Dünser, A. (2012). Augmented reality in the classroom. Computer, 45(7), 56-63.
Billinghurst, M., Grasset, R., Seichter, H., & Dünser, A. (2009), Towards ambient augmented reality with tangible interfaces. Proceedings of HCII’09, 387-396.
Billinghurst,M., Kato, H., & Poupyrev, I. (2001). The Magic Book: a transitional AR interface. Computers & Graphic, 25(5), 745-753.
Billinghurst, M., Kato, H., & Poupyrev, I. (2008). Tangible augmented reality. Proceedings of ACM SIGGRAPH ASIA, 1-10.
Bujak, K. R., Radu, I., Catrambone, R., MacIntyre, B., Zheng, R., & Golubski, G. (2013). A psychological perspective on augmented reality in the mathematics classroom. Computers & Education, 68, 536-544.
Campos, P., Pessanha, S., & Jorge, J. (2011), Fostering Collaboration in Kindergarten through an Augmented Reality Game. International Journal of Virtual Reality, 10(3), 33-39.
Caudell, T.P., and Mizell, D.W. (1992). Augmented Reality: an application of heads-up display technology to manual manufacturing processes. Proceedings of the Twenty-Fifth Hawaii International Conference on Systems Science, 2, 659-669.
Chan, C. (2000). Two Computational Approaches for Creating Chinese Painting. Master Thesis, Visualization Sciences Program, Texas A&M University.
Chen, C. J. (2006). The design, development and evaluation of a virtual reality based learning environment. Australasian Journal of Educational Technology,22(1), 39-63.
Chen, Y. C. (2006). A study of comparing the use of augmented reality and physical models in chemistry education. Proceedings of the ACM international conference on Virtual reality continuum and its applications, 369-372.
Chen, K. M., Chen, L. L., & Shen, S. T. (2008). Development and comparison of a full-scale car display and communication system by applying Augmented Reality. Displays, 29(1), 33-40.
Chen, R., & Wang, X. (2008). A framework of conceptualizing tangible augmented reality for design learning. In Proceedings of Third International Conference on Design Computing and Cognition, 23-25.
Cheok, A. D., Lim, Z. S., & Roger Thomas, K. C. T. (2007). Technical Section: Humanistic Oriental art created using automated computer processing and non-photorealistic rendering. Computers & Graphic, 31(2), 280-291.
Curtis, C. J., Anderson, S. E., Seims, J. E., Fleischer, K. W., & Salesin, D. H. (1997). Computer-generated watercolor. Proceedings of the 24th annual conference on Computer graphics and interactive techniques, 421-430.
Dalgarno, B., & Lee, M. J.W. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technology, 41(1), 10-32.
Dourish, P. (2001). Where the action is: the foundations of embodied interaction. MIT Press.
Druyan, S. (1997). Effect of the kinesthetic conflict on promoting scientific reasoning. Journal of Research in Science Teaching, 34(10), 1083-1099.
Dunleavy, M., Dede, C., & Mitchell, R. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology, 18(1), 7-22.
Dünser, A. (2008). Supporting low ability readers with interactive augmented reality. Annual Review of CyberTherapy and Telemedicine: Changing the Face of Healthcare, 39-46.
Dünser, A. & Hornecker, E. (2007). An observational study of children interacting with an augmented story book. Proceedings of the 2nd international conference on Technologies for e-learning and digital entertainment, 305-315.
Eggen, B., Feijs, L., & Peters, P. (2003). Linking physical and virtual interaction spaces. Proceedings of the second international conference on Entertainment computing, 1-8.
Feiner, S., MacIntyre, B., Höllerer, T., & Webster, A. (1997). A Touring Machine: Prototyping 3D Mobile Augmented Reality Systems for Exploring the Urban Environment. Proceedings of International Symposium on Wearable Computers, 74-83.
Fischer, J., Bartz, D., & Straβer, W. (2005). Artistic reality: fast brush stroke stylization for augmented reality. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, 155-158.
Fitzmaurice, G. (1996). Graspable user interfaces, PhD thesis, University of Toronto.
Fitzmaurice, G. & Buxto, W. (1997). An empirical evaluation of graspable user interfaces: towards specialized, space-multiplexed input. Proceedings of the ACM SIGCHI Conference on Human factors in computing systems, 43-50.
Fjeld, M., & Voegtli, M. (2002). Augmented Chemistry: an interactive educational workbench. Proceedings of the 1st International Symposium on Mixed and Augmented Reality, 259.
Gabbard, J. (1997). A taxonomy of usability characteristics in virtual environments, Master’s thesis, Department of Computer Science, University of Western Australia.
Glasson, G. E. (1989). The effects of hands on and teacher demonstration laboratory methods on science achievement in relation to reasoning ability and prior knowledge. Journal of Research in Science Teaching, 26(2), 121-131.
Grasset, R., Boissieux, L., Gascuel, J. D., & Schmalstieg, D. (2005). Interactive mediated reality. Proceedings of the Sixth Australasian conference on User interface, 21-29.
Gross, M. D., & Do, E. Y. L. (1996). Ambiguous intentions: a paper-like interface for creative design. Proceedings of the 9th annual ACM symposium on User interface software and technology. 183-192.
Haller, M., Landerl, F., Billinghurst, M. (2005). More sketchy, more AR, more fun. ACM SIGGRAPH 2005 Posters, 34.
Hearst, M. (1998). Sketching intelligent systems. Intelligent Systems and their Applications, IEEE, 13(3), 10-19.
Helsel, S. (1992). Virtual reality and education. Educational Technology, 13(5), 38-42.
Hornecker, E., & Buur, J. (2006). Getting a grip on tangible interaction: a framework on physical space and social interaction. Proceedings of the SIGCHI conference on Human Factors in computing systems, 437-446.
Huang, H., & Hanley, J. (1994). Phonological awareness and visual skills in learning to read Chinese and English. Cognition, 54(1), 73-98.
Huang, H., Rauch, U., & Liaw, S. (2010). Investigating learners’ attitudes toward virtual reality learning environments: based on a constructivist approach. Computers & Education, 55(3), 1171-1182.
Igarashi, T., Matsuoka, S., & Tanaka, H. (1999). Teddy: a sketching interface for 3D freeform design. Proceedings of the 26th annual conference on Computer graphics and interactive techniques. 409-416.
Ip, H.H., & Wong, H.T. (1997). Calligraphic Character Synthesis using Brush Model. Proceedings of the International Conference on Computer Graphics, 13-21.
Ishii, H. (2008). Tangible bits: beyond pixels. Proceedings of the 2nd international conference on Tangible and embedded interaction, xv-xxv.
Ishii, H., & Ullmer, B. (1997). Tangible Bits: Towards Seamless Interfaces between People, Bits, and Atoms. Proceedings of the ACM SIGCHI Conference on Human factors in computing systems, 234-241.
Kaufmann, H. (2003). Collaborative augmented reality in education. Position paper for keynote speech at Inagina 2003 conference.
Kaufmann, H. (2006). The Potential of Augmented Reality in Dynamic Geometry Education. Proceedings of the12th International Conference on Geometry and Graphics, 6-10.
Kaufmann, H., Dünser, A. (2007). Summary of usability evaluations of an educational augmented reality application. Proceedings of the 2nd international conference on virtual reality, 660-669.
Keefe, D. F., Feliz, D. A., Moscovich, T., Laidlaw, D. H., & LaViola, J. J. (2001). Cave Painting: A Fully Immersive 3DArtistic Medium and Interactive Experience. Proceedings of the 2001 Symposium on Interactive 3D Graphics, 85-93.
Kerawalla, L., Luckin, R., Seljeflot, S., & Woolard, A. (2006). Making it real: exploring the potential of augmented reality for teaching primary school science. Virtual Reality, 10(3-4), 163-174.
Klemmer, S. R., Hartmann, B., & Takayama, L. (2006). How bodies matter: five themes for interaction design. Proceedings of the 6th conference on Designing Interactive systems, 140-149.
Klopfer, E. (2008). Augmented learning: Research and design of mobile educational games. MIT Press.
Klopfer, E., & Sheldon, J. (2010). Augmenting your own reality: student authoring of science-based augmented reality games. New Directions for Youth Development, 2010(128), 85-94.
Kye, B., & Kim, Y. (2008). Investigation of the relationships between media characteristics, presence, flow, and learning effects in augmented reality based learning augmented reality. International Journal for Education Media and Technology, 2(1), 4–14.
Lee, D. U., Gaffar, A. A., Cheung, R. C., Mencer, O., Luk, W., & Constantinides, G. (2006). Accuracy-guaranteed bit-width optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(10), 1990-2000.
Leganchuk, A., Zhai, S., & Buxton, W. (1998). Manual and cognitive benefits of two-handed input: an experimental study. ACM Transactions on Computer-Human Interaction, 5(4), 326-359.
Lin, J., Duh, H., Abi-Rached, H., Parker, Furness, T. (2002). Effects of Field of View on Presence, Enjoyment, Memory, and Simulator Sickness in a Virtual Environment, Proceedings of the IEEE Virtual Reality Conference, 164-171.
Lindgren, R., & Moshell, J. M. (2011). Supporting children’s learning with body-based metaphors in a mixed reality environment. Proceedings of the Interaction Design and Children Conference, 177-180.
Marshall, P., Rogers, Y., & Hornecker, E. (2007). Are tangible interfaces really any better than other kinds of interfaces? CHI’07 workshop on tangible user interfaces in context & theory.
Martin, R., Sexton, C., Franklin, T., Gerlovich, J., McElroy, D. (2009). Teaching science for all children: Inquiry methods for constructing understanding. Allyn & Bacon.
Milgram, P., & Kishino, A. F. (1994). Taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 1321-1329.
Otsu, N. (1978). A threshold selection method from gray-level histogram. IEEE Transactions on System Man and Cybernet, 8(1), 62-66.
Parker, J. R. (2010). Algorithms for image processing and computer vision. John Wiley & Sons.
Poupyrev, I., Berry, R., Kurumisawa, J., Nakao, K., Billinghurst, M., Airola, C., Kato, H., et al. (2000). Augmented Groove: Collaborative Jamming in Augmented Reality. Proceedings of SIGGRAPH'2000 Conference Abstracts and Applications, 77.
Preece, J., & Benyon, D. (1993). A Guide to Usability – Human Factors in Computing. Addison-Wesley.
Radu, I. (2014). Augmented reality in education: a meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533-1543.
Roussou, M. (2004), Learning by doing and learning through play: An exploration of interactivity in virtual environments for children. Computers in Entertainment, 2(1), 10-32.
Ryokai, K., Marti, S., & Ishii, H. (2004). I/O brush: drawing with everyday objects as ink. Proceedings of the SIGCHI’04 Conference on Human Factors in Computing Systems, 303-310.
Shelton, B. E., & Hedley, N. R. (2004). Exploring a cognitive basis for learning spatial relationships with augmented reality. Technology, Instruction, Cognition and Learning, 1(4), 323.
Szalavári, Z., Schmalstieg, D., Fuhrmann, A., & Gervautz, M. (1998). Studierstube: An environment for collaboration in augmented reality. Virtual Reality, 3(1), 37-48.
Tang, A., Owen, C., Biocca, F., & Mou, W. (2003). Comparative effectiveness of augmented reality in object assembly. Proceedings of the SIGCHI conference on human factors in computing systems, 73-80.
Tek-Jin Nam, Woohun Lee. (2003). Integrating Hardware and Software: Augmented Reality Based Prototyping Method for Digital Products, CHI'03 extended abstracts on Human factors in computing systems, 956-957.
Theng, Y. L., Mei-Ling, C. L., Liu, W., & Cheok, A. D. (2007). Mixed reality systems for learning: a pilot study understanding user perceptions and acceptance. Virtual Reality, 728-737.
Thomas, B., Close, B., Donoghue, J., Squires, J., De Bondi, P., Morris, M., & Piekarski, W. (2000). ARQuake: An outdoor/indoor augmented reality first person application. Proceedings of ISWC, 139-146.
Ullmer, B. & Ishii, H. (2000). Emerging frameworks for tangible user interfaces. IBM Systems Journal, 39(3/4).915-931.
Van Krevelen, D., & Poelman, R. (2010). A survey of augmented reality technologies, applications and limitations. International Journal of Virtual Reality, 9(2), 1-20.
Veigl, S., Kaltenbach, A., Ledermann, F., Reitmayr, G., Schmalstieg, D. (2002). Two-Handed Direct Interaction with ARToolKit. Proceedings of the First IEEE International Workshop on ARToolKit.
Vesilind, E. M., & Jones, M. G. (1996). Hands-on: Science education reform. Journal of Teacher Education, 47(5), 375-385.
Wagner, D., & Barakonyi, I. (2003). Augmented reality kanji learning. Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality, 335-336.
Witmer, B.G. & Singer, M. J. (1998). Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225-240.
Xin, M., Sharlin, E., Sousa, M. C. (2008). Napkin sketch: handheld mixed reality 3D sketching. Proceedings of the ACM Symposium on Virtual Reality Software and Technology, 223-226.
Xin, M., Sharlin, E., Sousa, M. C., Greenberg, S., & Samavati, F. (2007). Purple crayon: from sketches to interactive environment. Proceedings of the international conference on Advances in computer entertainment technology, 208-211.
Yeh, J. W., & Ouhyoung, M. (2002). Non-photorealistic rendering in Chinese painting of animals. Journal of System Simulation, 14(6), 1220-1224.
Zhou, F., Duh, H. B. L., & Billinghurst, M. (2008). Trends in Augmented Reality Tracking, Interaction and Display: A Review of Ten Years of ISMAR. Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, 193-202.
Zuckerman, O., Arida, S., & Resnick, M. (2005). Extending tangible interfaces for education: digital montessori-inspired manipulatives. Proceedings of the SIGCHI conference on Human factors in computing systems, 859-868.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-09-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw