進階搜尋


下載電子全文  
系統識別號 U0026-0609201009464000
論文名稱(中文) 表面電漿子增強之雙光子影像與光陷阱
論文名稱(英文) Surface Plasmon-Enhanced Two-Photon Imaging and Optical Trapping
校院名稱 成功大學
系所名稱(中) 工程科學系碩博士班
系所名稱(英) Department of Engineering Science
學年度 98
學期 2
出版年 99
研究生(中文) 林俊佑
研究生(英文) Chun-Yu Lin
學號 n9893124
學位類別 博士
語文別 英文
論文頁數 105頁
口試委員 指導教授-陳顯禎
口試委員-邱爾德
口試委員-董成淵
口試委員-羅裕龍
口試委員-張世慧
中文關鍵字 非線性光學  電漿子  電磁場強化  螢光顯微術  光陷阱 
英文關鍵字 nonlinear optics  surface plasmons  local electric field enhancement  fluorescence microscopy  optical trapping 
學科別分類
中文摘要 本論文主要研究表面電漿子(surface plasmons,SPs)之局域電磁場強化現象在多層膜結構下之螢光特性的影響以及在光捕抓微粒子上的影響。首先利用SPs來增強雙光子激發螢光,試圖找出一個合適的螢光分子和金屬表面的間隔層,在雙光子激發內全反射螢光(total internal reflection fluorescence,TIRF)顯微鏡中作為一個權衡的螢光增強與抑制。因此,此部分研究以系統性的探討藉由SPs效應之雙光子激發之螢光增強與抑制之間的關係。利用Fresnel方程式和古典偶極輻射模型理論研究局域電場增強、螢光生命週期、量子效率及螢光發射耦合效率與螢光分子與金屬表面之間之SP效應。另外,雙光子TIRF顯微鏡結合時間相關單光子計數模塊已經開發出來觀察螢光生命週期、光穩定度及螢光增強。從模擬和實驗的結果,兩者之螢光增強和螢光生命週期的趨勢是一致的。可以發現在合適的二氧化矽厚度下,最大螢光增強為30倍。實驗結果證實,與傳統的TIRF相比,最佳的配置的二氧化矽厚度不僅明確地顯示有更明亮的螢光信號,而且當二氧化矽厚度增加時,提高了螢光分子的光穩定度及減少了螢光抑制。
在光陷阱上,二維之SP增強型光陷阱系統是基於單一的高數值孔徑(numerical aperture,NA)的物鏡,並且可以利用在抓取微粒子時,同時成像。在金膜上激發SPs,當其厚度為 45 nm的紅外區域波段進行分析時,可得到局域電場分佈有40倍的提高同時也強化了在金膜快面上的捕集的力量。因此,強大的捕捉力和高清晰度圖像的介質顆粒捕集可同時達到藉由一高NA的物鏡。所開發的SP增強型光陷阱系統成功地應用於高效捕集微粒子的大小到350 nm均勻分佈在蓋玻片表面上,並且同時觀察捕集情況。而被捕集的微粒子會排列成為一個大面積單層結構,並且減少排列上的缺陷,因此可以利用在二維納米球微影製程上。因此,表面電漿子可以同時藉由增強局域上之電場來增加螢光強度及高效率地微粒子。
英文摘要 In this thesis, local electric field enhancement via surface plasmons (SPs) is investigated to influence the fluorescence in multilayer structure and the optical force in particle trapping. It is theoretically and experimentally investigated that two-photon excited fluorescence is enhanced and quenched via SPs excited by total internal reflection with a silver film. The fluorescence intensity is fundamentally affected by the local electromagnetic field enhancement and the quantum yield change according to the surrounding structure and materials. By utilizing the Fresnel equation and classical dipole radiation modeling, local electric field enhancement, fluorescence quantum yield, and fluorescence emission coupling yield via SPs were theoretically analyzed at different dielectric spacer thicknesses between the fluorescence dye and the metal film. The fluorescence lifetime was also decreased substantially via the quenching effect. A two-photon excited total internal reflection fluorescence (TIRF) microscopy with a time-correlated single photon counting device has been developed to measure the fluorescence lifetimes, photostabilities, and enhancements. The experimental results demonstrate that the fluorescence lifetimes and the trend of the enhancements are consistent with the theoretical analysis. The maximum fluorescence enhancement factor in the SP-TIRF configuration can be increased up to 30 fold with a suitable thickness SiO2 spacer. Also, to compromise for the fluorescence enhancement and the fluorophore photostability, the SP-TIRF configuration with a 10 nm SiO2 spacer can provide an enhanced and less photobleached fluorescent signal via the assistance of enhanced local electromagnetic field and quenched fluorescence lifetime, respectively.
Furthermore, a two-dimensional (2D) SP-enhanced optical trapping system based on a single high numerical aperture (NA) objective has been developed and can be utilized to trap dielectric particles with simultaneous imaging. The 40-fold electric field enhancement and hence strong 2D trapping force distribution with SP excitation through a gold film with a thickness of 45 nm in the near infrared region was analyzed. The strong trapping force and high-resolution trapping image of dielectric particles can be simultaneously achieved via the single high NA objective coupling. The developed SP-enhanced trapping system was successfully applied to efficiently trap dielectric particles with a size down to 350 nm on a cover slip surface with real-time imaging observation. The trapped and aligned dielectric single layer particles were spread over a large area with a reduction in feature size could benefit 2D nanosphere lithography. Therefore, the SPs can enhance the fluorescence and optical force by enhancement of the local electric field simultaneously.
論文目次 Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 5
1.3 Outline 7
Chapter 2 Theoretical Analysis 8
2.1 Surface plasmons 8
2.1.1 Principle 8
2.1.2 Excitation of surface plasmons by light 14
2.2 Fluorescence quantum yield and emission coupling yield 28
2.3 Fluorescence enhancement 32
2.4 Optical trapping 32
Chapter 3 Surface Plasmon-Enhanced Two-Photon Excited Fluorescence 36
3.1 Sample preparation 36
3.2 Optical setup 37
3.3 Theoretical analysis 39
3.3.1 Local electromagnetic enhancement 39
3.3.2 Fluorescence lifetime and quantum yield 42
3.3.3 Fluorescence emission coupling yield 44
3.3.4 Fluorescence enhancement 47
3.4 Experimental results 50
3.4.1 Fluorescence lifetime and photostability 50
3.4.2 Fluorescence emission pattern 52
Chapter 4 Trapping Potential for Submicron Particles 59
4.1 Sample preparation 59
4.2 Optical setup 60
4.3 Theoretical analysis 61
4.4 Experimental results 69
Chapter 5 Surface Plasmon-Enhanced Optical Trapping 77
5.1 Sample preparation 77
5.2 Optical setup 77
5.3 Theoretical analysis 79
5.4 Experimental results 83
5.4.1 Surface plasmon-enhanced optical trapping 83
5.4.2 Small particles trapped with simultaneous high-resolution imaging 90
Chapter 6 Conclusions 93
References 95
Curriculum Vitae 102
參考文獻 1. A. Rohrbach, “Observing secretory granules with a multiangle evanescent wave microscope,” Biophys. J. 78, 2641-2654 (2000).
2. F. Schapper, J. T. Goncalves, and M. Oheim, “Fluorescence imaging with two-photon evanescent-wave excitation,” Eur. Biophys. J. 32, 635-643 (2003).
3. M. Oheim and F. Schapper, “Non-linear evanescent-field imaging,” J. Phys. D: Appl. Phys. 38, R185-R197 (2005).
4. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology,” Curr. Opin. Biotechnol. 16, 55-62 (2005).
5. E. Fort and S. Gresillon, “Surface enhanced fluorescence,” J. Phys. D: Appl. Phys. 41, 1-31(2008).
6. K. Tawa and W. Knoll, “Mismatching base-pair dependence of the kinetics of DNA-DNA hybridization studied by surface plasmon fluorescence spectroscopy,” Nucleic Acids Res. 32, 2372-2377 (2004).
7. F. Yu, B. Persson, S. Lofas, and W. Knoll, “Surface plasmon fluorescence immunoassay of free prostate-specific antigen in human plasma at the femtomolar level,” Anal. Chem. 76, 6765-6770 (2004).
8. E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, and J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces,” Anal. Biochem. 334, 303-311 (2004).
9. O. Stranik, H. M. McEvoy, C. McDonagh, and B. D. MacCraith, “Plasmonic enhancement of fluorescence for sensor applications,” Sens. Actuators B 107, 148-153 (2005).
10. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer (1998).
11. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979-2983 (2007).
12. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
13. W. H. Weber and C. F. Eagen, “Energy transfer from an excited dye molecule to the surface plasmons of an adjacent metal,” Opt. Lett. 4, 236-238 (1979).
14. J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express 13, 8855-8865 (2005).
15. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115-130 (2000).
16. C. D. Geddes and J. R. Lakowicz, “Metal-enhanced fluorescence,” J. Fluor. 12, 121-129 (2002).
17. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298, 1-24 (2001).
18. A. shkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
19. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288-290 (1986).
20. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Quantum. Electron. 6, 841-856 (2000).
21. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787-2809 (2004).
22. K. Svobda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930-932 (1994).
23. J. Liesener, M. Reicherter, T. Haist, and H.J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77-82 (2000).
24. H. Melville, G. F. Milne, G. C. Spalding, W. Sibbett, K. Dholakia, and D. McGloin, “Optical trapping of three-dimensional structures using dynamic holograms,” Opt. Express 11, 3562-3567 (2003).
25. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett. 17, 772-774 (1992).
26. S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused Gaussian beam,” Opt. Commun. 108, 133–143 (1994).
27. E. Almaas and I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B 12, 2429-2438 (1995).
28. M. Lester and M. Nieto-Vesperinas, “Optical forces on microparticles in an evanescent laser field,” Opt. Lett. 24, 936-938 (1999).
29. S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, “Optical lifting force under focused evanescent wave illumination: A ray optics model,” J. Appl. Phys. 97, 083103 (2005).
30. M. Gu, J. B. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, “Laser trapping and manipulation under focused evanescent wave illumination,” Appl. Phys. Lett. 84, 4236-4238 (2004).
31. C.-Y. Lin, K.-C. Chiu, C.-Y. Chang, S.-H. Chang, T.-F. Guo, and S.-J. Chen, “Surface plasmon-enhanced and quenched two-photon excited fluorescence,” Opt. Express 18, 12807-12817 (2010).
32. Y. G. Song, B. M. Han, and S. Chang, “Force of surface plasmon-coupled evanescent fields on Mie particles,” Opt. Commun. 198, 7-19 (2001).
33. G. Volpe, R. Quidant, G. Badenes and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006).
34. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: Tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100, 186804 (2008).
35. R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy,” Opt. Express 14, 9307-9316 (2006).
36. R.-Y. He, Y.-D. Su, K.-C. Cho, C.-Y. Lin, N.-S. Chang, C.-H. Chang, and S.-J. Chen, “Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging,” Opt. Express 17, 5987-5997 (2009).
37. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. I. Plane-wave spectrum approach to modeling classical effects,” J. Opt. Soc. Am. B 14, 1149-1159 (1997).
38. K. G. Sullivan and D. G. Hall, “Enhancement and inhibition of electromagnetic radiation in plane-layered media. II. Enhanced fluorescence in optical waveguide sensors,” J. Opt. Soc. Am. B 14, 1160-1166 (1997).
39. H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15, 1192-1201 (1998).
40. H. Benisty, H. D. Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electronics 34, 1612-1631(1998).
41. M. A. Heald and J. B. Marion, Classical Electromagnetic Radiation, Thomson (1994).
42. E. D. Palik, Handbook of Optical Constant of Solids, Academic (1985).
43. V. V. N. R. Kishore, K. L. Narasimhan, and N. Periasamy, “On the radiative lifetime, quantum yield and fluorescence decay of Alq in thin films,” Phys. Chem. Chem. Phys. 5, 1386-1391 (2003).
44. H. Benisty, R. Stanley, and M. Mayer, “Method of source terms for dipole emission modification in modes of arbitrary planar structures,” J. Opt. Soc. Am. A 15, 1192-1201 (1998).
45. H. Benisty, H. D. Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends,” IEEE J. Quantum Electronics 34, 1612-1631(1998).
46. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press ( 2006).
47. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, Wiley (1983).
48. U. Kreibig and M. Vollmer, Optical Properties of Metal Cluster, Springer (1995).
49. A. Yariv and P. Yeh, Optical Waves in Crystals, Wiley (1984).
50. E. Hecht, Optics, Springer (1995).
51. M. Trnavsky, J. Enderlein, T. Ruckstuhl, C. McDonagh, and B. D. MacCraith, “Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection,” J. Biomed. Opt. 13, 054021 (2008).
52. I. Gryczynski, J. Malicka, J. R. Lakowicz, E. M. Goldys, N. Calander, and Z. Gryczynski, “Directional two-photon induced surface plasmon-coupled emission,” Thin Solid Films 491, 173-176 (2005).
53. K. Ray, M. H. Chowdhury, and J. R. Lakowicz, “Observation of surface plasmon-coupled emission using thin platinum films,” Chem. Phys. Letts. 465, 92-95 (2008).
54. D. G. Zhang, X.-C. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49, 875-879 (2010).
55. D. G. Zhang, X.-C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by Rhodamine B molecules doped in a PMMA stripe,” Opt. Lett. 35, 408-410 (2010).
56. L. P. Ghislain, Neil A. Switz, and W. W. Webb, “Measurement of small forces using an optical trap,” Rev. Sci. Instrum. 65, 2762-2768 (1994).
57. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494-2507 (2002).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-09-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-09-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw