進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0608202023481200
論文名稱(中文) 凝析膨脹石墨製備及應用於柴油吸附之研究
論文名稱(英文) Preparation of expanded kish graphite and its use in the adsorption of diesel
校院名稱 成功大學
系所名稱(中) 環境工程學系
系所名稱(英) Department of Environmental Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 王琳婷
研究生(英文) Lin-Ting Wang
學號 P56071167
學位類別 碩士
語文別 中文
論文頁數 161頁
口試委員 指導教授-張祖恩
口試委員-侯文哲
口試委員-陳盈良
口試委員-陳宏達
中文關鍵字 凝析石墨  膨脹石墨  吸附材料  柴油  重複使用性 
英文關鍵字 kish graphite  expanded graphite  adsorbent  diesel  reusability 
學科別分類
中文摘要 一貫作業煉鋼製程中,高爐鐵水中的碳元素在降溫時會因為過飽和而析出凝析石墨,故高爐副產物中含有一定量的凝析石墨。凝析石墨為尚未大量開發的潛在石墨資源,為了拓展凝析石墨的應用及價值,本研究從高爐集塵灰中富集凝析石墨,並透過純化技術提升石墨含量後,以化學氧化插層程序將石墨製備成石墨層間化合物,再藉由高溫熱處理程序使其形成凝析膨脹石墨,並利用柴油吸附試驗,以評估其處理油污染物的能力。此外,亦進行凝析膨脹石墨的重複利用性試驗,期能將資源效益發揮至最大化。
本研究使用天然石墨作為凝析石墨之對照組,天然石墨粒徑主要位於0.297 ~ 0.590 mm,而凝析石墨粒徑分布範圍較廣。在電子顯微鏡影像中,天然石墨表面較平整,凝析石墨則存在孔洞缺陷。
天然石墨以H2SO4作為插層劑製備天然膨脹石墨,搭配HNO3作為氧化劑的膨脹體積優於H2O2。然而在製備凝析膨脹石墨時,因凝析膨脹石墨粒徑相對天然膨脹石墨較細碎且分布不一致,經由實驗後發現在粒徑為0.149 ~ 0.177 mm下製備之凝析膨脹石墨有較佳體積。在提高反應溫度後,可增加凝析膨脹石墨之體積,而HNO3比例、液固比與反應時間超過適當條件後,會導致石墨結構破壞且膨脹體積減小,因此在反應溫度為70 ℃、HNO3 : H2SO4為6 : 24、液固比為30 mL/g、反應時間20 min及熱處理溫度為1000 ℃條件下,獲得凝析膨脹石墨較佳體積79.0 mL/g。
在凝析膨脹石墨吸附試驗中,吸附時間為30 min下,其可吸附約339.1 kg-diesel/m3-EG(26.8 g-diesel/g-EG),且當吸附時間為3 min時,即可達到吸附30 min可吸附容量的87.1%,具有能夠快速地清除油污染物的能力。此外,利用真空抽氣過濾與熱脫附評估凝析膨脹石墨之重複利用性,得知第1次脫附後,凝析膨脹石墨的吸附容量雖下降較大,但第2 ~ 5次脫附後,凝析膨脹石墨的吸附容量下降緩慢,表示其具有良好的穩定性且可重複使用性。
綜合而言,凝析石墨從高爐副產物中富集後,可將其製備為凝析膨脹石墨並應用於油污染物處理,不僅拓展凝析石墨的價值,由於其可重複使用,符合資源永續循環的理念。
英文摘要 In the steelmaking process, the carbon element in the blast furnace molten iron precipitate kish graphite due to supersaturation when the temperature is getting lower, so the blast furnace by-products contain a certain amount of kish graphite. Kish graphite is a potential graphite resource that has not been widely developed yet. In order to expand the application and value of kish graphite, this study prepare graphite intercalation compounds (GICs) by chemical oxidation-intercalation reaction, and then forms expanded kish graphite through heat treatment. Expanded kish graphite could be used as adsorbent due to low density, well-developed network pores and specific surface. In this study, diesel adsorption experiment is used to evaluate the ability of expanded kish graphite to treat oil pollution. In addition, this study also use desorption method to regenerate the expanded kish graphite to evaluate its reusability. This study concluded that the expanded volume of expanded kish graphite was 79.0 mL/g under the conditions of reaction temperature = 70 ℃, HNO3:H2SO4 = 6:24, L/S = 30 mL/g, reaction time = 20 min and heat treatment temperature = 1000 ℃. Subsequent adsorption experiment is discussed under this condition. After the adsorption of diesel and desorption experiment, adsorption capacity of expanded kish graphite is 339.1 kg-diesel/m3-EG (26.8 g-diesel/g-EG) and it has good stability after five cycles. The result shows that expanded kish graphite can be used as a reusable material and achieve the concepts of sustainability and circular economy.
論文目次 摘要 I
SUMMARY III
誌 謝 X
目 錄 XII
表目錄 XV
圖目錄 XVI
第一章 前言 1
1-1 研究動機與目的 1
1-2 研究內容 2
第二章 文獻回顧 4
2-1 石墨結構、種類與應用 4
2-1-1 石墨結構與種類 4
2-1-2 凝析石墨之形成機制與富集純化技術 9
2-1-3 石墨層間化合物 16
2-1-4 石墨應用與發展 21
2-2 膨脹石墨之製備方法與特性 24
2-2-1 膨脹石墨形成之機制 24
2-2-2 石墨氧化插層程序 25
2-2-3 石墨層間化合物之膨脹程序 29
2-2-4 膨脹石墨之特性與應用 33
2-3 油污染物對環境之影響與處理方法 36
2-3-1 油污染物對環境之影響 36
2-3-2 油污染物之處理方法 38
2-4 小結 43
第三章 研究材料、設備與方法 44
3-1 研究架構與實驗流程 44
3-2 研究材料與設備 47
3-2-1 樣品前處理 47
3-2-2 實驗試藥與儀器設備 47
3-3 研究分析與方法 50
3-3-1 製備石墨層間化合物之條件與實驗程序 50
3-3-2 製備膨脹石墨之實驗程序 52
3-3-3 膨脹石墨應用於油品吸附之實驗程序 53
3-3-4 膨脹石墨之重複使用效率 54
3-3-5 分析方法 55
第四章 結果與討論 62
4-1 天然石墨與凝析石墨之基本特性 62
4-1-1 天然石墨與凝析石墨之物理特性 62
4-1-2 天然石墨與凝析石墨之化學特性 66
4-1-3 小結 73
4-2 膨脹石墨製備之參數探討 74
4-2-1 氧化劑對膨脹石墨製備之影響 74
4-2-2 反應條件對膨脹石墨製備之影響 83
4-2-3 膨脹石墨之特性探討 94
4-2-4 小結 102
4-3 凝析膨脹石墨製備之探討 104
4-3-1 粒徑與反應溶液配比對凝析膨脹石墨製備之影響 104
4-3-2 反應條件對凝析膨脹石墨製備之影響 111
4-3-3 凝析膨脹石墨之特性探討 121
4-3-4 小結 128
4-4 膨脹石墨應用於柴油吸附之探討 130
4-4-1 膨脹石墨對柴油吸附之評估 131
4-4-2 膨脹石墨之重複使用效率 136
4-4-3 小結 145
第五章 結論與建議 146
5-1 結論 146
5-2 建議 148
參考文獻 149
附錄 157
參考文獻 Ahmad, A. L., Sumathi, S., &Hameed, B. H., Residual oil and suspended solid removal using natural adsorbents chitosan, bentonite and activated carbon: A comparative study, Chemical Engineering Journal, Vol. 108, NO. 1–2, pp. 179–185, 2005.
Ali, N., El-Harbawi, M., Jabal, A. A., &Yin, C.-Y., Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix, European journal of Clinical and Medical Oncology, Vol. 4, NO. 1, pp. 23–26, 2012.
Annunciado, T. R., Sydenstricker, T. H. D., &Amico, S. C., Experimental investigation of various vegetable fibers as sorbent materials for oil spills, Marine Pollution Bulletin, Vol. 50, NO. 11, pp. 1340–1346, 2005.
Asghar, H. M. A., Hussain, S. N., Sattar, H., Brown, N. W., &Roberts, E. P. L., Environmentally friendly preparation of exfoliated graphite, Journal of Industrial and Engineering Chemistry, Vol. 20, NO. 4, pp. 1936–1941, 2014.
Australia Goverment, Australias critical minerals strategy 2019, Commonwealth of Australia, 2019.
Bourelle, E., Kaburagi, Y., Hishiyama, Y., &Inagaki, M., STM study of surfaces of kish graphite doped by iron, Carbon, Vol. 39, NO. 13, pp. 1955–1962, 2001.
Bu, X., Xie, G., Peng, Y., Ge, L., &Ni, C., Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery, Physicochemical Problems of Mineral Processing, Vol. 53, NO. 1, pp. 342–365, 2017.
Chung, D. D. L., Exfoliation of graphite, Journal of Materials Science, Vol. 22, NO. 12, pp. 4190–4198, 1987.
Chung, D. D. L., Graphite intercalation compounds, Encyclopedia of Materials: Science and Technology (Second Edition), pp. 3641–3645, 2001.
Chung, D. D. L., A review of exfoliated graphite, Journal of Materials Science, Vol. 51, pp. 554–568, 2015.
Dai, C., Gu, C., Liu, B., Lyu, Y., Yao, X., He, H., Fang, J., &Zhao, G., Preparation of low-temperature expandable graphite as a novel steam plugging agent in heavy oil reservoirs, Journal of Molecular Liquids, Vol. 293, pp. 111535, 2019.
Ding, X., Wang, R., Zhang, X., Zhang, Y., Deng, S., Shen, F., Zhang, X., Xiao, H., &Wang, L., A new magnetic expanded graphite for removal of oil leakage, Marine Pollution Bulletin, Vol. 81, NO. 1, pp. 185–190, 2014.
Dresselhaus, M. S., &Dresselhaus, G., Intercalation compounds of graphite, Advances in Physics, Vol. 30, NO. 2, pp. 139–326, 1981.
European Commission, Study on the review of the list of critical raw materials, 2017.
Goudarzi, R., &Hashemi Motlagh, G., The effect of graphite intercalated compound particle size and exfoliation temperature on porosity and macromolecular diffusion in expanded graphite, Heliyon, Vol. 5, NO. 10, pp. e02595, 2019.
He, J., Song, L., Yang, H., Ren, X., &Xing, L., Preparation of sulfur-free exfoliated graphite by a two-step intercalation process and its application for adsorption of oils, Journal of Chemistry, Vol. 2017, pp. 1–8, 2017.
Hérold, A., Petitjean, D., Furdin, G., &Klatt, M., Exfoliation of graphite intercalation compounds: classification and discussion of the processes from new experimental data relative to graphite-acid compounds, Materials Science Forum, Vol. 152–153, pp. 281–288, 1994.
Hong, X., &Chung, D. D. L., Exfoliated graphite with relative dielectric constant reaching 360, obtained by exfoliation of acid-intercalated graphite flakes without subsequent removal of the residual acidity, Carbon, Vol. 91, NO. 716, pp. 1–10, 2015.
Hung, W. C., Cheng, K. F., Lan, C. H., Chang, Y. C., &Wu, K. H., Preparation and infrared/millimeter wave attenuation properties of magnetic expanded graphite by explosive combustion, Materials Express, Vol. 6, NO. 1, pp. 53–60, 2016.
Hung, W. C., Wu, K. H., Lyu, D. Y., Cheng, K. F., &Huang, W. C., Preparation and characterization of expanded graphite/metal oxides for antimicrobial application, Materials Science and Engineering C, Vol. 75, pp. 1019–1025, 2017.
Inagaki, M., On the formation and decomposition of graphite-bisulfate, Carbon, Vol. 4, NO. 1, pp. 137–141, 1966.
Junhong, Z., Preparation methods and current situation of expandable graphite used as environment-friendly materials, China Non-Metallic Minerals Industry, pp. 15–16, 2010.
Kang, F., Zheng, Y. P., Wang, H. N., Nishi, Y., &Inagaki, M., Effect of preparation conditions on the characteristics of exfoliated graphite, Carbon, Vol. 40, NO. 9, pp. 1575–1581, 2002.
Kujawski, M., Pearse, J. D., &Smela, E., Elastomers filled with exfoliated graphite as compliant electrodes, Carbon, Vol. 48, NO. 9, pp. 2409–2417, 2010.
Li, J., Feng, L., &Jia, Z., Preparation of expanded graphite with 160 μm mesh of fine flake graphite, Materials Letters, Vol. 60, NO. 6, pp. 746–749, 2006.
Li, J., Li, J., &Li, M., Preparation of expandable graphite with ultrasound irradiation, Materials Letters, Vol. 61, NO. 28, pp. 5070–5073, 2007.
Li, J., Zeng, X., Ren, T., &van derHeide, E., The preparation of graphene oxide and its derivatives and their application in bio-tribological systems, Lubricants, Vol. 2, NO. 3, pp. 137–161, 2014.
Li, R., Li, Z., Yang, R., Yin, X., Lv, J., Zhu, L., &Yang, R., Polycaprolactone/poly(L-lactic acid) composite micro/nanofibrous membrane prepared through solution blow spinning for oil adsorption, Materials Chemistry and Physics, Vol. 241, pp. 122338, 2020.
Liu, S., &Loper, C. R., The formation of kish graphite, Carbon, Vol. 29, NO. 4–5, pp. 547–555, 1991.
Liu, T., Zhang, R., Zhang, X., Liu, K., Liu, Y., &Yan, P., One-step room-temperature preparation of expanded graphite, Carbon, Vol. 119, pp. 544–547, 2017.
Luque, F. J., Huizenga, J. M., Crespo-Feo, E., Wada, H., Ortega, L., &Barrenechea, J. F., Vein graphite deposits: Geological settings, origin, and economic significance, Mineralium Deposita, Vol. 49, NO. 2, pp. 261–277, 2014.
Martin, W. H., &Brocklehurst, J. E., The thermal expansion behaviour of pyrolytic graphite-bromine residue compounds, Carbon, Vol. 1, NO. 2, pp. 133–141, 1964.
Mysore, D., Viraraghavan, T., &Jin, Y. C., Treatment of oily waters using vermiculite, Water Research, Vol. 39, NO. 12, pp. 2643–2653, 2005.
Nikkhah, A. A., Zilouei, H., Asadinezhad, A., &Keshavarz, A., Removal of oil from water using polyurethane foam modified with nanoclay, Chemical Engineering Journal, Vol. 262, pp. 278–285, 2015.
Oberlin, A., Carbonization and graphitization, Carbon, Vol. 22, NO. 6, pp. 521–541, 1984.
Peng, T., Liu, B., Gao, X., Luo, L., &Sun, H., Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite, Applied Surface Science, Vol. 444, pp. 800–810, 2018.
Peng, W., Li, H., Liu, Y., &Song, S., Comparison of Pb(II) adsorption onto graphene oxide prepared from natural graphites: Diagramming the Pb(II) adsorption sites, Applied Surface Science, Vol. 364, pp. 620–627, 2016.
Pennell, K. D., Dean Rhue, R., Suresh, P., Rao, C., &Johnston, C. T., Vapor-phase sorption of p-xylene and water on soils and clay minerals, Environmental Science and Technology, Vol. 26, NO. 4, pp. 756–763, 1992.
Pham, T.Van, Nguyen, T. T., Nguyen, D. T., Thuan, T.Van, Bui, P. Q. T., Viet, V. N. D., &Bach, L. G., The preparation and characterization of expanded graphite via microwave irradiation and conventional heating for the purification of oil contaminated water, Journal of Nanoscience and Nanotechnology, Vol. 19, NO. 2, pp. 1122–1125, 2018.
Ray, S. C., Application and uses of graphene oxide and reduced graphene oxide, Applications of Graphene and Graphene-Oxide Based Nanomaterials, pp. 39–55, 2015.
Raza, M., Synthesis of hydrogenated amorphous carbon (a-C:H) thin films by HiPIMS-based processes, University of Linköpings, Department of Physics, Chemistry and Biology, pp. 55, 2012.
Rengasamy, R. S., Das, D., &Praba Karan, C., Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers, Journal of Hazardous Materials, Vol. 186, NO. 1, pp. 526–532, 2011.
Salvatore, M., Synthesis and characterization of expandable graphite using different oxidizing agents, University of Naples Federico, Department of Chemical, Materials and Production Engineering, pp. 134, 2017.
Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., &Bhowmick, A. K., A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites, Progress in Polymer Science (Oxford), Vol. 36, NO. 5, pp. 638–670, 2011.
Shioyama, H., Interactions of two chemical species in the interlayer spacing of graphite, Synthetic Metals, Vol. 114, NO. 1, pp. 1–15, 2000.
Sykam, N., Jayram, N. D., &Mohan Rao, G., Exfoliation of graphite as flexible SERS substrate with high dye adsorption capacity for Rhodamine 6G, Applied Surface Science, Vol. 471, pp. 375–386, 2019.
Sykam, N., Jayram, N. D., &Rao, G. M., Highly efficient removal of toxic organic dyes, chemical solvents and oils by mesoporous exfoliated graphite: Synthesis and mechanism, Journal of Water Process Engineering, Vol. 25, pp. 128–137, 2018.
Sykam, N., &Kar, K. K., Rapid synthesis of exfoliated graphite by microwave irradiation and oil sorption studies, Materials Letters, Vol. 117, pp. 150–152, 2014.
Tao, S., Wei, S., Yulan, Y., Takeuchi, K., Kitazawa, H., Fujishige, M., Akuzawa, N., Ortiz-Medina, J., Morelos-Gomez, A., Cruz-Silva, R., Araki, T., Hayashi, T., Endo, M., Sykam, N., Jayram, N. D., &Rao, G. M., characterization of expanded graphite microstructure and fabrication of composite phase-change material for energy storage, Journal of Materials in Civil Engineering, Vol. 27, NO. 4, pp. 04014156, 2015.
Toyoda, M., &Inagaki, M., Heavy oil sorption using exfoliated graphite New application of exfoliated graphite to protest heavy oil pollution, Carbon, Vol. 38, NO. 2, pp. 199–210, 2000.
Tryba, B., Przepiórski, J., &Morawski, A. W., Influence of chemically prepared H2SO4-graphite intercalation compound (GIC) precursor on parameters of exfoliated graphite (EG) for oil sorption from water, Carbon, Vol. 41, NO. 10, pp. 2013–2016, 2003.
United States Geological Survey, Mineral Commodity Summaries 2020, United States Geological Survey, 2020.
Vlaev, L., Petkov, P., Dimitrov, A., &Genieva, S., Cleanup of water polluted with crude oil or diesel fuel using rice husks ash, Journal of the Taiwan Institute of Chemical Engineers, Vol. 42, NO. 6, pp. 957–964, 2011.
Wang, C., Wu, Z., Wei, M., Pei, N., &Wei, J., Study on the mechanism of expanded graphite degreasing and its influencing factor, Environmental Science and Management, Vol. 34, NO. 4, pp. 84–87, 2009.
Wei, Q. F., Mather, R. R., Fotheringham, A. F., &Yang, R. D., Evaluation of nonwoven polypropylene oil sorbents in marine oil-spill recovery, Marine Pollution Bulletin, Vol. 46, NO. 6, pp. 780–783, 2003.
Wei, X. H., Liu, L., Zhang, J. X., Shi, J. L., &Guo, Q. G., HClO4-graphite intercalation compound and its thermally exfoliated graphite, Materials Letters, Vol. 63, NO. 18–19, pp. 1618–1620, 2009.
Weng, W.-G., Chen, G.-H., Wu, D.-J., &Yan, W.-L., HDPE/expanded graphite electrically conducting composite, Composite Interfaces, Vol. 11, NO. 2, pp. 131–143, 2004.
Wu, J., Wang, N., Wang, L., Dong, H., Zhao, Y., &Jiang, L., Electrospun porous structure fibrous film with high oil adsorption capacity, ACS Applied Materials and Interfaces, Vol. 4, NO. 6, pp. 3207–3212, 2012.
Xu, C., Jiao, C., Yao, R., Lin, A., &Jiao, W., Adsorption and regeneration of expanded graphite modified by CTAB-KBr/H3PO4 for marine oil pollution, Environmental Pollution, Vol. 233, pp. 194–200, 2018.
Yakovlev, A.V., Finaenov, A. I., Zabud’kov, S. L., &Yakovleva, E.V., Thermally expanded graphite: Synthesis, properties, and prospects for use, Russian Journal of Applied Chemistry, Vol. 79, NO. 11, pp. 1741–1751, 2006.
Yang, H., Bian, S., Hu, J., Li, F., &Yao, T., Effect of water chemistry on the adsorption of lubricating oil on oxidized graphite, Journal of Molecular Liquids, Vol. 219, pp. 1157–1160, 2016.
Yousefi, R., &Cheraghizade, M., Semiconductor/Graphene Nanocomposites: Synthesis, Characterization, and Applications, Applications of Nanomaterials, pp. 23–43, 2018.
Yuan, L., Guo-wang, Z., Zi-qiang, L. I., &Xiao, X., Research progress of the protecting large flaky graphite, China Non-Metallic Minerals Industry, Vol. 102, pp. 2–5, 2013.
Zazula, J. M., On Graphite transformations at high temperature and pressure induced by absorption of the LHC beam, LHC Project Note 78, , 1997.
Zhao, H., Pang, X., &Zhai, Z., Preparation and antiflame performance of expandable graphite modified with sodium hexametaphosphate, Journal of Polymers, Vol. 2015, pp. 1–5, 2015.
Zhao, M., &Liu, P., Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder, Desalination, Vol. 249, pp. 331–336, 2009.
Zhao, Q., Cheng, X., Wu, J., &Yu, X., Sulfur-free exfoliated graphite with large exfoliated volume: Preparation, characterization and its adsorption performance, Journal of Industrial and Engineering Chemistry, Vol. 20, NO. 6, pp. 4028–4032, 2014.
Zhong, Y. L., Tian, Z., Simon, G. P., &Li, D., Scalable production of graphene via wet chemistry: Progress and challenges, Materials Today, Vol. 18, NO. 2, pp. 73–78, 2015.
丁耀華、唐啟榮、楊曉源、王玉仁、楊武態,高爐鐵水碳溶解度與片狀石墨析出的實驗研究,昆明理工大學學報,第29卷,第5期,2004。
張東、田勝力、肖德炎,微波法製備納米多孔石墨,非金屬礦,第27卷,第6期,2004。
林莉萍,螯合二架鐵活化過硫酸鹽氧化處理柴油污染坋土,國立中興大學,環境工程學系,碩士論文,2014。
江尉萍,高爐凝析石墨富集與純化之研究,國立成功大學,環境工程學系,碩士論文,2019。
藍志祥,磁性膨脹石墨複合材料製備與干擾紅外線/毫米波效能研究,國防大學理工學院化學及材料工程學系,2014。
陳俊廷,含石墨亮片物質特性分析及資源化之評估,國立屏東科技大學,環境工程與科學系,碩士論文,2007。
韓志東,新型石墨層間化合物的製備及其膨脹與阻燃機理的研究,哈爾濱理工大學,電氣工程學系,博士後研究工作報告,2008。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-07-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-07-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw