進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0608202021230900
論文名稱(中文) 採用內部聯結燃料儲存系統的廢生質物多聯產程序之優化分配及經濟分析
論文名稱(英文) Optimal allocation and economic analysis of waste biomass-based polygeneration process using interconnected fuel storage system
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 張維宸
研究生(英文) Wei-Chen Chang
學號 N36071104
學位類別 碩士
語文別 中文
論文頁數 121頁
口試委員 指導教授-吳煒
口試委員-陳志勇
口試委員-張玨庭
口試委員-何宗仁
中文關鍵字 廢棄生質物  多聯產  優化分配  燃料儲存系統  經濟分析 
英文關鍵字 waste biomass  polygeneration  optimal allocation  interconnected fuel storage system  economic analysis 
學科別分類
中文摘要 隨著工業快速的發展及人口逐年上升,全球能源使用量逐年高升,加上石化燃料日漸缺乏,發展永續能源系統成為各國致力之研究議題。故本研究以森林廢棄物(forest residue)作為原料,兼顧廢棄物處理及能量轉化之目的,並結合多聯產的概念,將其轉化成高用途的合成氣,以建立一個可提供電力、天然氣及氫氣之能量產物的系統,以在未來能源市場作彈性支援的角色。
多聯產程序設計上簡單將合成氣作分流設計,分別進入複循環產生電力及透過甲烷化反應產生合成天然氣,在產生合成天然氣之餘,亦可選擇再分流純化成氫氣。透過Aspen Plus進行穩態模擬,在設定分流範圍內,發電量為4.3MW~179MW,合成天然氣產量為121.4~26363kg/hr,氫氣產量為16.6kg~8917kg/hr,整體效率值則介於38%~68%。
以需滿足電力及天然氣需求作為情境,提出雙產物及三產物系統及搭配燃料電池與內部燃料儲存系統的系統架構,使用GAMS軟體找各系統架構之最適化操作模式,再藉由整體經濟分析得到三產物系統搭配內部燃料天然氣儲存為情境下最合適之系統架構。最後,在計畫年限內估計9.9年可以回本,並有8%的內部報酬率,證明其投資潛力。
英文摘要 With the rapid development of industry and the increase of population, the global energy use is increasing year by year, coupled with the increasing shortage of fossil fuels, the development of sustainable energy system has become a important research topic for all countries. Therefore, our research uses forest residues as raw materials, takes account the purpose of waste recovery and energy conversion, and combines the concept of polygeneration to convert them into high-purpose synthesis gas(syngas) to establish a system that can provide electricity ,natural gas and hydrogen, which can be a flexible role in future energy market.
In the design of polygeneration process, we divide syngas into combined cycle and methanation for power generation and synthesis natural gas(SNG) production through simple design with splitter, and we also have the third choice for purifying hydrogen. In the range of splitter, the max power generation is 179MW, max SNG production is 26363 kg/hr, max hydrogen production is 8917 kg/hr and the efficiency of whole process are between 38% to 68% via aspen plus simulation.
In order to satisfying power demand and natural gas demand, we mention two and three products system integrated fuel cell and interconnected fuel storage system as system framework, and search a optimal operation mode of all frameworks by GAMs software. After that, three products system with interconnected SNG storage system is appropriate system framework in all scenarios through economic analysis. Finally, polygeneration system has 8% IRR and 9.9 years payback period which prove its potential of investment.
論文目次 摘要 I
Abstract II
誌謝 XII
目錄 XIV
表目錄 XVIII
圖目錄 XXI
第一章 緒論 1
1.1 前言 1
1.2文獻回顧 2
1.3研究動機與目的 2
第二章 建模理論 4
2.1 多聯產(polygeneration) 4
2.2生物質前處理(biomass pretreatment) 6
2.3 氣化程序(Gasification process) 7
2.3.1 主要步驟及反應式(main reactions) 8
2.3.2 組成(composition) 11
2.3.3 氣化劑(gasification agent) 12
2.3.5 操作條件(Operation condition) 14
2.3.6 氣化爐的種類(Type of gasifier) 14
2.4 水氣轉移反應(water gas shift reaction) 15
2.4 甲烷化反應(Methanation reaction) 18
2.5 整合氣化複循環(Integrated gasification combined cycle, IGCC) 20
2.5.1 氣渦輪(Gas turbine ,GT) 21
2.5.2 蒸汽渦輪(steam turbine ,ST) 21
2.5.3 廢熱回收鍋爐(Heat recovery steam generator, HRSG) 22
2.6 Flexible multi-generation systems(FMGs) 22
2.7 經濟分析指標 23
第三章 多聯產系統穩態模擬 26
3.1 生質物前處理 26
3.2 生質物氣化 31
3.3 水氣轉移反應 43
3.4 甲烷化反應 46
3.5 聯合循環發電系統 51
3.5.1 氣渦輪發電機設計 51
3.5.2 蒸汽渦輪發電機組 56
3.6 多聯產程序穩態模擬結果及效率 60
3.6.1多聯產整廠架構 60
3.6.2 多聯產程序穩態結果 62
第四章 優化分配及經濟分析 68
4.1 優化分配 68
4.1.1 市場需求及情境設定 68
4.1.2 模擬數據回歸 71
4.1.3 目標函數 73
4.1.4 基本架構:雙產物系統 75
4.1.5架構一:三產物系統搭配燃料電池 77
4.1.6 架構二:結合內部聯結氫氣儲存之三產物系統 82
4.1.7 架構三:結合內部聯結天然氣儲存之雙產物系統 90
4.1.8 結論 97
4.2 經濟分析 99
4.2.1 森林廢棄物前處理 99
4.2.1.1 設備成本 100
4.2.1.2 操作成本 101
4.2.2 整合氣化聯合循環 102
4.2.2.1 設備成本 102
4.2.2.2 操作成本 104
4.2.3 合成天然氣生產 105
4.2.3.1 設備成本 106
4.2.3.2 操作成本 107
4.2.4 其他設備 108
4.2.5 總成本比較 110
4.2.6 經濟指標評估 111
第五章 結論 113
參考文獻 116
參考文獻 [1] "IEA Bioenergy Annual Report 2016," 2017.
[2] P. Basu, Biomass Gasification ,Pyrolysis and Torrefaction, 3 ed. 2018.
[3] R. Górecki, A. Piętak, M. Meus, and M. Kozłowski, "Biomass Energy Potential – Green Energy for the University of Warmia and Mazury in Olsztyn," Journal of KONES. Powertrain and Transport, vol. 20, no. 4, pp. 99-106, 2015.
[4] B.-Y. Yu and I. L. Chien, "Design and Economic Evaluation of a Coal-Based Polygeneration Process To Coproduce Synthetic Natural Gas and Ammonia," Industrial & Engineering Chemistry Research, vol. 54, no. 41, pp. 10073-10087, 2015.
[5] A. Rong and R. Lahdelma, "Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints," Renewable and Sustainable Energy Reviews, vol. 53, pp. 363-372, 2016.
[6] S. Li, L. Gao, and H. Jin, "Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China," Energy Conversion and Management, vol. 112, pp. 91-100, 2016/03/15/ 2016.
[7] H. Lin, H. Jin, L. Gao, and W. Han, "Techno-economic evaluation of coal-based polygeneration systems of synthetic fuel and power with CO2 recovery," Energy Conversion and Management, vol. 52, no. 1, pp. 274-283, 2011/01/01/ 2011.
[8] L. E. Arteaga-Pérez, O. Gómez-Cápiro, A. Karelovic, and R. Jiménez, "A modelling approach to the techno-economics of Biomass-to-SNG/Methanol systems: Standalone vs Integrated topologies," Chemical Engineering Journal, vol. 286, pp. 663-678, 2016/02/15/ 2016.
[9] F. Calise, M. Dentice d'Accadia, and A. Piacentino, "A novel solar trigeneration system integrating PVT (photovoltaic/thermal collectors) and SW (seawater) desalination: Dynamic simulation and economic assessment," Energy, vol. 67, pp. 129-148, 2014/04/01/ 2014.
[10] F. Calise, G. de Notaristefani di Vastogirardi, M. Dentice d'Accadia, and M. Vicidomini, "Simulation of polygeneration systems," Energy, vol. 163, pp. 290-337, 2018.
[11] Q. Liu, "Pretreatment and Posttreatment Approaches for Reducing Biomass Inorganic Impurities during Gasification," 2017.
[12] R. Sankaran et al., "Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review," Bioresource Technology, vol. 298, p. 122476, 2020/02/01/ 2020.
[13] B. Arias, C. Pevida, J. Fermoso, M. G. Plaza, F. Rubiera, and J. J. Pis, "Influence of torrefaction on the grindability and reactivity of woody biomass," Fuel Processing Technology, vol. 89, no. 2, pp. 169-175, 2008/02/01/ 2008.
[14] J. A. Ruiz, M. C. Juárez, M. P. Morales, P. Muñoz, and M. A. Mendívil, "Biomass gasification for electricity generation: Review of current technology barriers," Renewable and Sustainable Energy Reviews, vol. 18, pp. 174-183, 2013.
[15] A. Dufour, E. Masson, P. Girods, Y. Rogaume, and A. Zoulalian, "Evolution of Aromatic Tar Composition in Relation to Methane and Ethylene from Biomass Pyrolysis-Gasification," Energy & Fuels, vol. 25, no. 9, pp. 4182-4189, 2011/09/15 2011.
[16] L. Abdelouahed, O. Authier, G. Mauviel, J. P. Corriou, G. Verdier, and A. Dufour, "Detailed Modeling of Biomass Gasification in Dual Fluidized Bed Reactors under Aspen Plus," Energy & Fuels, vol. 26, no. 6, pp. 3840-3855, 2012/06/21 2012.
[17] B. Shi, W. Xu, E. Wu, W. Wu, and P.-C. Kuo, "Novel design of integrated gasification combined cycle (IGCC) power plants with CO2 capture," Journal of Cleaner Production, vol. 195, pp. 176-186, 2018.
[18] A. Demirbaş, "Calculation of higher heating values of biomass fuels," Fuel, vol. 76, no. 5, pp. 431-434, 1997/04/01/ 1997.
[19] L. P. R. Pala, Q. Wang, G. Kolb, and V. Hessel, "Steam gasification of biomass with subsequent syngas adjustment using shift reaction for syngas production: An Aspen Plus model," Renewable Energy, vol. 101, pp. 484-492, 2017.
[20] C. Loha, P. K. Chatterjee, and H. Chattopadhyay, "Performance of fluidized bed steam gasification of biomass – Modeling and experiment," Energy Conversion and Management, vol. 52, no. 3, pp. 1583-1588, 2011/03/01/ 2011.
[21] P. Parthasarathy and K. S. Narayanan, "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, vol. 66, pp. 570-579, 2014/06/01/ 2014.
[22] P. M. Lv, Z. H. Xiong, J. Chang, C. Z. Wu, Y. Chen, and J. X. Zhu, "An experimental study on biomass air–steam gasification in a fluidized bed," Bioresource Technology, vol. 95, no. 1, pp. 95-101, 2004/10/01/ 2004.
[23] D. Mendes, A. Mendes, L. M. Madeira, A. Iulianelli, J. M. Sousa, and A. Basile, "The water-gas shift reaction: from conventional catalytic systems to Pd-based membrane reactors-a review," Asia-Pacific Journal of Chemical Engineering, vol. 5, no. 1, pp. 111-137, 2010.
[24] H. Er-rbib and C. Bouallou, "Modeling and simulation of CO methanation process for renewable electricity storage," Energy, vol. 75, pp. 81-88, 2014.
[25] W. Wu, F. Wen, J.-R. Chen, P.-C. Kuo, and B. Shi, "Comparisons of a class of IGCC polygeneration/power plants using calcium/chemical looping combinations," Journal of the Taiwan Institute of Chemical Engineers, vol. 96, pp. 193-204, 2019.
[26] C. Casarosa, F. Donatini, and A. Franco, "Thermoeconomic optimization of heat recovery steam generators operating parameters for combined plants," Energy, vol. 29, no. 3, pp. 389-414, 2004/03/01/ 2004.
[27] C. Lythcke-Jørgensen, A. V. Ensinas, M. Münster, and F. Haglind, "A methodology for designing flexible multi-generation systems," Energy, vol. 110, pp. 34-54, 2016.
[28] B. V. M. Henrik Lund, David Connolly, "Renewable Energy Systems-A smart Energy Systems Approach to the Choice and Modelling of 100% Renewable Solutions," Chemical Engineering Transactions, 2014.
[29] K. Sahoo, E. Bilek, R. Bergman, and S. Mani, "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, vol. 235, pp. 578-590, 2019.
[30] M. Manouchehrinejad and S. Mani, "Process simulation of an integrated biomass torrefaction and pelletization (iBTP) plant to produce solid biofuels," Energy Conversion and Management: X, vol. 1, 2019.
[31] P.-C. Kuo and W. Wu, "Thermodynamic analysis of a combined heat and power system with CO 2 utilization based on co-gasification of biomass and coal," Chemical Engineering Science, vol. 142, pp. 201-214, 2016.
[32] VANGTON [Online]. Available: https://www.vangton.com/.
[33] A. Pirraglia, R. Gonzalez, D. Saloni, and J. Denig, "Technical and economic assessment for the production of torrefied ligno-cellulosic biomass pellets in the US," Energy Conversion and Management, vol. 66, pp. 153-164, 2013.
[34] A. Dufour, P. Girods, E. Masson, Y. Rogaume, and A. Zoulalian, "Synthesis gas production by biomass pyrolysis: Effect of reactor temperature on product distribution," International Journal of Hydrogen Energy, vol. 34, no. 4, pp. 1726-1734, 2009.
[35] S. M. Beheshti, H. Ghassemi, and R. Shahsavan-Markadeh, "Process simulation of biomass gasification in a bubbling fluidized bed reactor," Energy Conversion and Management, vol. 94, pp. 345-352, 2015.
[36] M. G. Rasul and S. Begum, "Energy Recovery from Solid Waste: Application of Gasification Technology," in Handbook of Ecomaterials, 2019, pp. 719-751.
[37] M. Rycroft. (2019). Biomass gasification of large-scale electircity generation [Online]. Available: https://www.ee.co.za/article/biomass-gasification-for-large-scale-electricity-generation.html.
[38] M. Campoy, A. Gómez-Barea, F. B. Vidal, and P. Ollero, "Air–steam gasification of biomass in a fluidised bed: Process optimisation by enriched air," Fuel Processing Technology, vol. 90, no. 5, pp. 677-685, 2009.
[39] S. Fremaux, S.-M. Beheshti, H. Ghassemi, and R. Shahsavan-Markadeh, "An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed," Energy Conversion and Management, vol. 91, pp. 427-432, 2015.
[40] S. Singh Siwal, Q. Zhang, C. Sun, S. Thakur, V. Kumar Gupta, and V. Kumar Thakur, "Energy production from steam gasification processes and parameters that contemplate in biomass gasifier – A review," Bioresource Technology, vol. 297, p. 122481, 2020/02/01/ 2020.
[41] R.-Y. Chein and C.-T. Yu, "Thermodynamic equilibrium analysis of water-gas shift reaction using syngases-effect of CO2 and H2S contents," Energy, vol. 141, pp. 1004-1018, 2017.
[42] J. G. Speight, "6 - Gasification processes for syngas and hydrogen production," in Gasification for Synthetic Fuel Production, R. Luque and J. G. Speight, Eds.: Woodhead Publishing, 2015, pp. 119-146.
[43] C. A.Grande, "Biogas Upgrading by Pressure Swing Adsoption," 2011.
[44] "Pipeline basics & specifics about natural gas pipelines," 2015.
[45] C. Y. Liu, G. Chen, N. Sipöcz, M. Assadi, and X. S. Bai, "Characteristics of oxy-fuel combustion in gas turbines," Applied Energy, vol. 89, no. 1, pp. 387-394, 2012.
[46] "."
[47] T. k. Ibrahim et al., "The optimum performance of the combined cycle power plant: A comprehensive review," Renewable and Sustainable Energy Reviews, vol. 79, pp. 459-474, 2017/11/01/ 2017.
[48] R. J. Braun, S. Kameswaran, J. Yamanis, and E. Sun, "Highly Efficient IGFC Hybrid Power Systems Employing Bottoming Organic Rankine Cycles With Optional Carbon Capture," Journal of Engineering for Gas Turbines and Power, vol. 134, no. 2, 2012.
[49] U.S. Energy Information Administration(EIA) [Online]. Available: https://www.eia.gov/.
[50] "International Statistics for Water Services," 2012.
[51] A. Yilanci, I. Dincer, and H. K. Ozturk, "A review on solar-hydrogen/fuel cell hybrid energy systems for stationary applications," Progress in Energy and Combustion Science, vol. 35, no. 3, pp. 231-244, 2009/06/01/ 2009.
[52] B. E. Ulf Bossel "Energy and the Hydrogen Economy."
[53] J. Burkhardt, A. Patyk, P. Tanguy, and C. Retzke, "Hydrogen mobility from wind energy – A life cycle assessment focusing on the fuel supply," Applied Energy, vol. 181, pp. 54-64, 2016/11/01/ 2016.
[54] L. Kumar, A. A. Koukoulas, S. Mani, and J. Satyavolu, "Integrating Torrefaction in the Wood Pellet Industry: A Critical Review," Energy & Fuels, vol. 31, no. 1, pp. 37-54, 2016.
[55] M. K. Max Nielsen-Pincus, Katherine MacFarland,Cassandra Moseley, "Impacts of the biomass producer of collector tax credit on oregon`s wood fuels market and economy," 2011.
[56] K. M.Holmgren, "Investment cost estimates for gasification-based biofuel production systems," 2015.
[57] E. Yao, H. Wang, L. Wang, G. Xi, and F. Maréchal, "Multi-objective optimization and exergoeconomic analysis of a combined cooling, heating and power based compressed air energy storage system," Energy Conversion and Management, vol. 138, pp. 199-209, 2017/04/15/ 2017.
[58] E. Esmaili, E. Mostafavi, and N. Mahinpey, "Economic assessment of integrated coal gasification combined cycle with sorbent CO2 capture," Applied Energy, vol. 169, pp. 341-352, 2016/05/01/ 2016.
[59] B. Shi, W. Xu, W. Wu, and P.-C. Kuo, "Techno-economic analysis of oxy-fuel IGCC power plants using integrated intermittent chemical looping air separation," Energy Conversion and Management, vol. 195, pp. 290-301, 2019/09/01/ 2019.
[60] P. Haro, F. Johnsson, and H. Thunman, "Improved syngas processing for enhanced Bio-SNG production: A techno-economic assessment," Energy, vol. 101, pp. 380-389, 2016/04/15/ 2016.
[61] M. S. Hossain, C. Theodoropoulos, and A. Yousuf, "Techno-economic evaluation of heat integrated second generation bioethanol and furfural coproduction," Biochemical Engineering Journal, vol. 144, pp. 89-103, 2019.
[62] W. A.Amos, "Costs of Storing and Transporting Hydrogen," 1998.
[63] D. Ferrero, M. Gamba, A. Lanzini, and M. Santarelli, "Power-to-Gas Hydrogen: Techno-economic Assessment of Processes towards a Multi-purpose Energy Carrier," Energy Procedia, vol. 101, pp. 50-57, 2016.
[64] Alibala.com [Online]. Available: https://www.alibaba.com/product-detail/ISO-FUEL-FOOD-OIL-CHEMICAL-liquid_60766134541.html?spm=a2700.7724857.normalList.18.4f2547dcH0VIFM.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-07起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-07起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw