進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0608201921113400
論文名稱(中文) 新型選擇性雷射熔融製程有限元素分析方法發展
論文名稱(英文) Development of a Novel Finite Element Based Residual Stress Analysis Scheme for Selective Laser Melting Process
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳世春
研究生(英文) Shih-Chun Chen
學號 N16064551
學位類別 碩士
語文別 中文
論文頁數 210頁
口試委員 指導教授-陳國聲
口試委員-屈子正
口試委員-陳鐵城
口試委員-于劍平
中文關鍵字 選擇性雷射熔融  有限元素分析  MATLAB  熱殘留應變  殘留應力  翹曲變形 
英文關鍵字 Selective laser melting  Finite element simulation  Matlab  Thermal residual strain  Residual stress  Distortion 
學科別分類
中文摘要 選擇性雷射熔融(SLM)積層製造技術,在生醫與航太領域當中常被用來製造具有複雜的幾何形貌與鏤空設計之特殊零件,並若是以傳統加工方式來製造相關零件則無法配合其原本之設計,但是在此製造過程中因受到高能雷射熱源加熱使金屬材料定型,因此將產生相應之強烈熱殘留應力導致其成品產生裂紋與翹曲變形。而對此製程缺陷也有許多應用有限元素數值分析之相關研究以優化整體製程參數組合,但是大部份之製程模型無法對於相變化過程對模型參數影響進行修正以及無法有效降低製程模型計算成本,因此目前缺乏可快速有效預測各製程參數結果之選擇型雷射熔融(SLM)製程數值模型,使得在目前實際製程中缺乏可優化製程參數組合之工具。由此,本研究擬提出一模擬邏輯將有限元素分析軟體透過整合外部計算工具以修正相變化過程在數值模型計算中無法有效改變各製程參數之缺陷,接下來將透過此可模擬相變化過程之製程數值模型結果參數作為領域知識以用於後續等效雷射熱源之簡化製程模型,達到提升計算效率之目的。而且本研究將透過比較相關類似研究的模型來證明本研究所提出之模擬邏輯建立之新型SLM製程模型為可信並說明其優勢,同時也將透過此模型之製程參數分析來探討SLM製程缺陷產生因素,並說明等效雷射熱源簡化模型之各項修正參數相對於製程參數之變化趨勢。由此,藉由本研究所提出之模擬邏輯可將此高度熱機變化偶合製程簡化為非偶合之製程數值模型,達到建立平衡計算效率與精度之模型以快速有效分析各製程參數結果之目的。
英文摘要 Selective laser melting (SLM) has been identified as a promising manufacturing technology for modern additive fabrication. However, the main composition of this process is powder melting during fabrication. Due to enormous thermo-mechanical mismatch, consequently, significant structural distortion and thermal stress would be expected. Current finite element analysis usually needs to pre-assign the material properties and lacks the ability for performing effective material change during simulation. Moreover, the accuracy of the current equivalent SLM FE model still have a lot of room for the improvement. Without correcting these problems, the achieved stress analysis results could be questionable due to uncorrected equivalent process results and the material melting/solidifying effect could not perform well. In this work, the integration of the precise model and the equivalent model would be built to solve these problems. First, for the precise mdoel, the Matlab code would be the main structure with the subroutine FEA, Fortran and Python to create the material melting/solidifying analyzable model, called Model A. Second, for the equivalent model, by simplifying the laser scanning as the thermal strain and using the Model A results to correct the equivalent model results, the efficiently and accurately equivalent model would be built and called Model B. In this approach, it is possible to adequately describe the residual stress and distortion more accurate and efficient in SLM model and it could be applied to other high coupling problems.
論文目次 摘要 I
Abstract II
Extended Abstract III
致謝 XXVII
目錄 XXIX
表目錄 XXXV
圖目錄 XXXVI
符號表 XLVI
第一章 緒論
1.1 前言 1
1.2. 文獻回顧 5
1.3 研究動機目的 7
1.4 研究方法 8
1.5 本文架構 10
第二章 研究背景介紹
2.1 本章介紹 13
2.2 選擇性雷射熔融(SLM)金屬3D列印製程介紹 14
2.3 材料力學相關理論 17
2.3.1 熱應力學理論 17
2.3.2 彈塑性力學理論 20
2.4 移動熱源之熱應力相關研究 21
2.5 選擇性雷射融熔製程有限元素分析研究 23
2.6 結合有限元素軟體與外部計算工具模型相關研究 28
2.7 文獻評估 30
2.8 本章結論 31
第三章 優化模型概念設計
3.1 本章介紹 33
3.2.快速有效之預測模型發展流程 35
3.2.1 Model A 建立目標 36
3.2.2 Model B 建立目標 39
3.3 Model A 整合外部計算工具模型建立 42
3.3.1 SLM製程有限元素模型 42
3.3.2 外部演算工具模型 45
3.4 Model B 取代熱傳分析模型建立 48
3.4.1 等效殘留應變領域知識建立 48
3.4.2 純應力SLM有限元素分析模型 50
3.5 本章結論 53
第四章 有限元素模型建立
4.1 本章介紹 55
4.2.SLM製程有限元素模擬 57
4.2.1 雷射掃描過程等效 57
4.2.2 鋪粉疊層過程等效 58
4.2.3 工件冷卻與釋放過程等效 59
4.2.4 材料改變過程等效 60
4.2.5 材料參數設定等效 61
4.2.6 初步SLM有限元素模型建立 63
4.3 SLM製程有限元素模型優化設計 66
4.3.1 材料相變化過程模擬 66
4.3.2 取代雷射掃描模擬模型 69
4.4 Model A建立 72
4.4.1 整合外部演算工具模型概要介紹 72
4.4.2 整體模擬建立 74
4.4.3 相變化演算模型分析 76
4.5 Model B建立 78
4.5.1 取代雷射掃描行為模型概要介紹 79
4.5.2 整體模擬建立 80
4.5.3 修正因子初步設計與分析 82
4.6 有限元素模型驗證 86
4.6.1 Model A驗證 86
4.6.2 Model B驗證 90
4.7 本章討論 93
4.8 本章結論 94
第五章 Model A熱傳分析
5.1 本章介紹 95
5.2 模型單軌跡雷射掃描分析 97
5.3 模型疊層分析 101
5.4 模型熱傳參數分析 107
5.5 雷射參數分析 113
5.6 結果討論 117
5.7 本章結論 118
第六章 Model A應力參數分析
6.1 本章介紹 119
6.2. 模型單軌跡雷射掃描分析 121
6.2.1 模型材料降伏參數分析 121
6.2.2 材料相變化演算影響分析 124
6.3 模型疊層分析 127
6.4 雷射參數分析 131
6.5 模型熱參數分析 134
6.5.1 模型材料溫度相依應力分析 134
6.5.2 模型基板預熱應力分析 137
6.6 結果討論 139
6.7 本章結論 140
第七章 Model B應力分析
7.1 本章介紹 141
7.2. Model B模擬問題與對策 143
7.2.1 模型粉末層收縮塊數分析 144
7.2.2 模型外加溫度差影響分析 148
7.2.3 模型底材塑形變形影響修正對策 149
7.3 Model B分析策略驗證 154
7.3.1 Model B策略結果 154
7.3.2 Li模擬策略結果 159
7.3.3 各應力分析策略結果比較 162
7.4 Model B參數分析 167
7.4.1 粉末層等效熱殘留應變雷射參數分析 167
7.4.2 修正因子雷射參數分析 169
7.5 結果討論 172
7.6 本章結論 174
第八章 研究結果討論
8.1 全文歸納 175
8.2. 研究結果討論 177
8.2.1 整體研究模擬邏輯結果討論 177
8.2.2 整合外部計算工具之SLM製程模型結果討論 178
8.2.3 等效雷射熱源之簡化SLM製程模型結果討論 179
8.3 未來展望與未來工作 182
8.4 本章總結 184
第九章 結論與未來展望
9.1 本文結論 185
9.2 本文貢獻 188
9.3 未來工作 190
參考文獻 191
附錄A1 MATLAB程式碼(相變化修正演算) 197
附錄A2 PYTHON程式碼(輸出數值模型結果) 199
附錄A3 ABAQUS程式碼(Model A) 200
附錄A4 ABAQUS程式碼(Model B) 207
參考文獻 [1] I Gibson, DW Rosen, B Stucker, Additive manufacturing technologies. 17. New York: Springer, 2014.[Available: Springer e-book]
[2] TM Wang, JT Xi, Y Jin. "A model research for prototype warp deformation in the FDM process." The International Journal of Advanced Manufacturing Technology, 33, no.11-12, pp. 1087-1096, 2007
[3] PT Lan, SY Chou, LL Chen and D Gemmill. “Determining fabrication orientations for rapid prototyping with Stereolithography apparatus”, Computer-Aided Design, 29, pp. 53-62, 1997
[4] BE Carroll, TA Palmer and AM Beese. “Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing”, Acta Materialia, 87, pp 309-320, 2015
[5] JM Williams, et al,” Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering,” Biomaterials, 26, pp. 4817-4827, 2005
[6] A Takaichi, et al,” Microstructures and mechanical properties of Co–29Cr–6Mo alloy fabricated by selective laser melting process for dental applications”, Journal of the Mechanical Behavior of Biomedical Materials, 21, pp. 67-76, 2013
[7] C Fu and YB Guo, "3-Dimensional Finite Element Modeling of Selective Laser Melting Ti-6Al-4V Alloy," 25th Annual International Solid Freeform Fabrication Symposium, pp. 1129-1144, 2014.
[8] K Kempen, et al. "Producing crack-free, high density M2 Hss parts by selective laser melting: pre-heating the baseplate." In Proc. 24th Int. Solid Free. Fabr, pp. 131-139, 2013.
[9] L Yang, Y Yang, and D Wang. "A study on the residual stress during selective laser melting (SLM) of metallic powder." The International Journal of Advanced Manufacturing Technology, 87, no.1-4, pp 647-656,2016
[10] L Van Belle, G Vansteenkiste, and JC. Boyer, "Comparisons of Numerical Modelling of the Selective Laser Melting," Key Engineering Materials, 504, pp. 1067-1072, 2012.
[11] IA. Roberts, Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing, Ph.D dissertation, University of Wolverhampton, 2012
[12] C Li, JF. Liu, and YB. Guo, "Prediction of Residual Stress and Part Distortion in Selective Laser Melting," Procedia CIRP, 45, pp. 171-174, 2016.
[13] P Patcharapit, Numerical Modeling of Thermal and Mechanical Behaviors in the Selective Laser Sintering of Metals, Ph.D dissertation, Carnegie Mellon University, 2018.
[14] 鐘詠迪,316L不鏽鋼之選擇性雷射熔融積層製程應力與變形分析,國立成功大學機械系碩士論文,2018。
[15] A Gebhardt. "Understanding additive manufacturing.", 2011. [E-book] Abailable: ScienceDirect e-book
[16] P Alvarez, et al. "Computationally efficient distortion prediction in powder bed fusion additive manufacturing." Int. J. Eng. Res. Sci, 2, no.10, pp 39-46, 2016
[17] P Mercelis and JP Kruth, “Residual stresses in selective laser sintering and selective laser melting”, Rapid Prototyping Journal, 12, no.5, pp. 254-265, 2006
[18] S Timoshenko and JN. Goodier, Theory of elasticity. New York: McGraw-Hill, 1970. [E-book] Abailable: Springer e-book

[19] IS Sokolnikoff and RD Specht. Mathematical theory of elasticity, 83. New York: McGraw-Hill, 1956.
[20] Yielding behavior of bar, [Online] Available: https://en.wikipedia.org/wiki/File:Metal_yield.svg ,[Accessed Jul. 7, 2019]
[21] D. Rosenthal, ‘‘The Theory of Moving Sources of Heat and Its Application of Metal Treatments,’’ Trans. ASME, 68, pp. 849–866, 1946.
[22] Y. Iwasaki, "Study on the Forming of Hull Plate by Line Heating Method," Mitsubishi Heavy Industries Technical Review, 12, no. 3, 1975.
[23] NN. Rykalin and A. Nikolaev, "Welding Arc Heat Flow," Welding in the World, pp. 112-132, 1971.
[24] YC. Hsiao, Finite element analysis of laser forming. M.S. thesis, Massachusetts Institute of Technology, 1997.
[25] Służalec, Theory of Thermomechanical Processes in Welding, 2005 [E-book] Available: Springer e-book
[26] KS. Chen, TS Yang, RC Hong and TC Chiu "Thermo-mechanical analysis of laser peeling of ultrathin glass for removing edge flaws in web processing applications," Microsystem Technologies, 24, no. 1, pp. 397-409, 2017.
[27] Y. Zhang, L Wu, H El-Mounayri, K Brand, J Zhang "Molecular Dynamics Study of the Strength of Laser Solidified Iron Nanoparticles," Procedia Manufacturing, 1, pp. 296-307, 2015.
[28] Sorkin, JL. Tan and CH. Wong, “Multi-material modelling for selective laser melting”, Procedia Engineering, 216, pp 51-57, 2017
[29] Fergani, F. Berto, T. Welo, and SY. Liang, "Analytical modelling of residual stress in additive manufacturing," Fatigue & Fracture of Engineering Materials & Structures, 40, no. 6, pp. 971-978, 2017.
[30] CY Yap, CK Chua and ZL Dong "An effective analytical model of selective laser melting." Virtual and Physical Prototyping, 11, pp 21-26, 2016
[31] NE Hodge, RM Ferencz and RM Vignes. "Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting." Additive Manufacturing, 12, pp 159-168, 2016
[32] SL Wu and KS Chen, “Modeling of chemical mechanical polishing processes by cellular automata and finite element/matlab integration methods” Microsystem Technologies, 21, pp 1879-1892, 2015
[33] V. Vahdat, DS. Grierson, KT. Turner, and RW. Carpick, "Nano-Scale Forces, Stresses, and Tip Geometry Evolution of Amplitude Modulation Atomic Force Microscopy Probes," ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp 543-549, 2011.
[34] SC Chen, KS Chen and TC Chiu, “Modeling Phase Transformation for Residual Stress Study in Selective Laser Melting Processes by Finite Element/Matlab Integration”, The 7th IIAE International Conference on Industrial Application Engineering (ICIAE 2019), Japan, 2019
[35] SC Chen and KS Chen, “Modeling of Selective Laser Sintering Processes by Finite Element/Matlab Integration”, The 6th Asian Conference on Mechanics of Functional Materials and Structures (ACMFMS 2018), Taiwan, 2018
[36] M Rombouts, et al. "Fundamentals of selective laser melting of alloyed steel powders." CIRP annals, 55, pp187-192, 2016
[37] H Hibbitt, B Karlsson and P Sorensen. "ABAQUS user manual, version 6.12." Simulia, 2012

[38] M Brandt, Laser Additive Manufacturing: Materials, Design, Technologies, and Applications, Woodhead, 2016.
[39] 東台精密機械公司選擇性雷射熔融機台,[Online] Available: http://www.tongtai.com.tw/tw/product-detail.php?id=266,[Accessed Jul. 7, 2019]
[40] E Yasa and JP Kruth. "Application of laser re-melting on selective laser melting parts." Advances in Production engineering and Management, 6, no.4, pp 259-270, 2011
[41] JP Kruth, et al. "Selective laser melting of iron-based powder." Journal of materials processing technology, 149, pp 616-622, 2004
[42] C Panwisawas, et al. "On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting." Scripta Materialia,105, pp 14-17, 2015
[43] 不鏽鋼SS316材料參數(常溫),[Online] Available: https://www.azom.com/properties.aspx?ArticleID=863,[Accessed Jul. 7, 2019]
[44] HC Tran, YL Lo and MH Huang "Analysis of scattering and absorption characteristics of metal powder layer for selective laser sintering." IEEE/ASME Transactions on Mechatronics, 22, pp 1807-1817, 2017.
[45] C Qiu, et al. "On the role of melt flow into the surface structure and porosity development during selective laser melting." Acta Materialia, 96, pp 72-79, 2015
[46] 不鏽鋼SS316材料參數(溫度相依),[Online] Available: https://www.nickelinstitute.org/media/1699/high_temperaturecharacteristicsofstainlesssteel_9004_.pdf,[Accessed Jul. 7, 2019]
[47] GG. Stoney, “The tension of metallic films deposited by electrolysis.” Proceeding of Royal Society A, vol.82, no. 553, pp. 172-175, 1909.
[48] C Li, CH. Fu, YB. Guo, and FZ. Fang, "Fast Prediction and Validation of Part Distortion in Selective Laser Melting," Procedia Manufacturing, 1, pp. 355-365, 2015.
[49] C Li, CH. Fu, YB. Guo, and FZ. Fang, "A multiscale modeling approach for fast prediction of part distortion in selective laser melting," Journal of Materials Processing Technology, 229, pp. 703-712, 2016.
[50] L Parry, IA Ashcroft and RD Wildman . "Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation." Additive Manufacturing,12, pp 1-15, 2016
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw