進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0608201918325200
論文名稱(中文) 氧化鎳與氧化鈷溶液旋塗於n型氮化鎵之光電化學水分解特性分析
論文名稱(英文) The study of photoelectrochemical water splitting using n-GaN with sol-gel coated NiOX & CoOX thin film as working electrode
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 107
學期 2
出版年 108
研究生(中文) 蘇俊霖
研究生(英文) Chun-Lin Su
電子信箱 joe200384@gmail.com
學號 L76061105
學位類別 碩士
語文別 中文
論文頁數 119頁
口試委員 指導教授-許進恭
召集委員-許世昌
口試委員-賴韋志
口試委員-陳昭宇
口試委員-李明倫
中文關鍵字 氮化鎵  光電化學  氧化鈷  氧化鎳  抗腐蝕 
英文關鍵字 gallium nitride  nickel oxide  cobalt oxide  photoelectrochemical 
學科別分類
中文摘要 本實驗是利用三五族氮化鎵半導體,應用於光電化學水分解系統中當作工作電極,因為氮化鎵具有寬能隙足夠跨越氧化還原電位。但經過長時間的光電化學量測後會使氮化鎵表面產生嚴重的腐蝕現象,所以本次論文將會探討有效利用氧化物的催化作用,使載子能夠更容易傳輸至電解液,改善氮化鎵與電解液直接接觸造成腐蝕現象。
所以本次實驗使用鎳與鈷粉末作為前驅物配置氧化鎳與氧化鈷溶液旋塗於氮化鎵基板上,於光電化學量測中作為工作電極,量測長時間光電流及分析材料特性。
最後,由實驗結果得到,氧化鎳在本次實驗具有催化作用,可以增加載子傳輸,且由表面分析可觀察出,氮化鎵有覆蓋一層氧化鎳後確實有達到抗腐蝕效果,且光電流有提升。但氧化鈷實驗中,催化效果較不顯著,推測因為氧化物材料本身旋塗的厚度,所以影響載子傳輸,使光電流偏低。
英文摘要 In this experiment, we used nickel oxide (NiOX) and cobalt oxide (CoOX) to cover n-type gallium nitride (n-GaN) to reduce surface corrosion of gallium nitride (GaN) semiconductors and electrolytes during long-term measurements. Nickel (Ni) and cobalt (Co) powders were used as precursors in the experiments. The precursor is synthesized synthetically. Finally, the spin coating method was uniformly applied to the surface of gallium nitride (GaN), and the surface oxide characteristics were analyzed by using different annealing temperatures. It is observed by the photoelectrochemical system that nickel oxide (NiOX) has a catalytic action, so that holes can be introduced into the electrolyte more quickly, and gallium nitride covering nickel oxide (NiOX) is used for a long period of time with less corrosion. The photocurrent of cobalt oxide (CoOX) is lower than that of gallium nitride (GaN). It is speculated that the thickness of the cobalt oxide film is too thick, thereby hindering carrier transport and low photocurrent.
論文目次 摘要 I
誌謝 XII
目錄 XIV
表目錄 XIX
圖目錄 XXI
第一章 序論 1
1.1簡介 1
1.2 研究動機與文獻回顧 4
1.3 論文大綱 11
第二章 原理 13
2.1光電化學系統介紹 13
2.2半導體介紹 15
2.2.1半導體光催化介紹 15
2.2.2 半導體缺陷 16
2.2.3 空乏層、反轉層與累積層(Depletion, Inversion, and Accumulation Layers) 16
2.2.4 表面羥基化 18
2.2.5 偏壓應用(Applying Bias Potential) 18
2.2.6 平帶電壓(The Flatband Potential) 19
2.2.7 準費米能階(The Quasi-Fermi Level) 21
2.3光電化學系統計算 22
2.3.1 效率轉換 22
2.3.2 入射光轉電流效率(Incident Photon-to-electron Conversion Efficiency,IPCE) 24
2.4實驗量測儀器原理 25
2.4.1拉曼光譜(Raman Spectrometer)原理 25
2.4.2 X射線光電子光譜儀(X-Ray Photoelectron Sprectroscpoe)原理 26
2.4.3掃描式電子顯微鏡(Scanning Electron Microscope) 27
2.4.4原子力顯微鏡(Atomic Force Microscope)原理 28
第三章 氧化鎳應用在氮化鎵基板的抗腐蝕及光電化學產氫 29
3.1 前言 29
3.2實驗裝置及藥品配置 31
3.2.1實驗裝置與介紹 31
3.2.2藥品規格及配置 34
3.3工作電極製程及步驟 35
3.4光電化學量測參數 39
3.5實驗量測儀器 40
3-6 NiOX材料於氮化鎵基板材料分析 42
3-6-1紫外光-可見光光譜儀 (Ultraviolet-Visible Spectroscopy)穿透與反射圖 42
3-6-2拉曼光譜(Raman Spectrometer) 45
3-6-3表面分析與化學鍵結能-X射線光電子光譜(X-Ray Photoelectron Sprectroscpoe) 46
3-7 NiOX材料於氮化鎵基板表面分析 51
3-7-1原子力顯微鏡(Atomic Force Microscope,AFM) 51
3-7-2掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 54
3-8 NiOX材料於氮化鎵基板光電化學特性分析 61
3-8-1 Mott-Sohottky 量測 61
3-8-2 開路電位Open Circuit Potential(OCP) 62
3-8-3線性掃描伏安法Linear Sweep Voltammetry(LSV) 64
3-8-4電化學阻抗頻譜分析 Electrochemical Impedence Spectroscopy(EIS) 66
3-8-5工作電極長時間穩定性量測(J-T Curve) 70
3-8-6 Incident Photon-to-electron Conversion Efficiency,IPCE 71
3-8-7 applied bias photon-to-current efficiency ,ABPE 72
3-8-8氣體產量與效率 73
第四章 CoOX應用在氮化鎵基板的抗腐蝕及光電化學產氫 74
4-1實驗裝置及藥品配置 74
4-1-1 實驗裝置及與介紹 74
4-1-2 藥品規格及配置 74
4-2 工作電極製程及步驟 75
4-3光電化學量測參數 79
4-4 CoOX材料於氮化鎵基板光電化學特性分析 80
4-4-1紫外光-可見光光譜儀 (Ultraviolet-Visible Spectroscopy)穿透與反射圖 80
4-4-2拉曼光譜(Raman Spectrometer) 83
4-4-3表面分析與化學鍵結能-X射線光電子光譜(X-Ray Photoelectron Sprectroscpoe) 85
4-5 CoOX材料於氮化鎵基板表面分析 91
4-5-1原子力顯微鏡(Atomic Force Microscope,AFM) 91
4-5-2掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 94
4-6 CoOX材料於氮化鎵基板光電化學特性分析 101
4-6-1 Mott-Schottky 量測 101
4-6-2開路電位Open Circuit Potential(OCP) 102
4-6-3電化學阻抗頻譜分析 Electrochemical Impedence Spectroscopy(EIS) 104
4-6-4線性掃描伏安法Linear Sweep Voltammetry(LSV) 106
4-6-5工作電極長時間穩定性量測(J-T Curve) 108
4-6-6 Incident Photon-to-electron Conversion Efficiency,IPCE 110
4-6-7 applied bias photon-to-current efficiency ,ABPE 111
4-6-8氣體產量與效率 112
第五章 結論與未來展望 112
5-1結論 112
5-2未來展望 114
參考文獻 114
參考文獻 [1] T. Bradford, Solar revolution: the economic transformation of the global energy industry. MIT Press, 2008.
[2] F. Walsh, "FARADAY AND HIS LAWS OF ELECTROLYSIS: AN APPRECIATION," Bulletin of Electrochemistry, vol. 7, no. 11, pp. 481-484, 1992.
[3] J. Xu and G. F. Froment, "Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics," AIChE journal, vol. 35, no. 1, pp. 88-96, 1989.
[4] S. Abanades and G. Flamant, "Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides," Solar energy, vol. 80, no. 12, pp. 1611-1623, 2006.
[5] A. V. Bridgwater, "Review of fast pyrolysis of biomass and product upgrading," Biomass and bioenergy, vol. 38, pp. 68-94, 2012.
[6] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," nature, vol. 238, no. 5358, p. 37, 1972.
[7] A. Fujishima, K. Kohayakawa, and K. Honda, "Hydrogen production under sunlight with an electrochemical photocell," Journal of the Electrochemical Society, vol. 122, pp. 1487-1489, 1975.
[8] M. Halmann, "Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells," Nature, vol. 275, no. 5676, p. 115, 1978.
[9] K. Fujii, T. Karasawa, and K. Ohkawa, "Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation," Japanese journal of applied physics, vol. 44, no. 4L, p. L543, 2005.
[10] F. A. Chowdhury, Z. Mi, M. G. Kibria, and M. L. Trudeau, "Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation," APL Materials, vol. 3, no. 10, p. 104408, 2015.
[11] S. Yotsuhashi et al., "Photo-induced CO2 reduction with GaN electrode in aqueous system," Applied Physics Express, vol. 4, no. 11, p. 117101, 2011.
[12] S.-W. Ryu, Y. Zhang, B. Leung, C. Yerino, and J. Han, "Improved photoelectrochemical water splitting efficiency of nanoporous GaN photoanode," Semiconductor Science and Technology, vol. 27, no. 1, p. 015014, 2011.
[13] A. Huerta-Flores, L. M. Torres-Martínez, E. Moctezuma, and O. Ceballos-Sanchez, "Enhanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides (MO, M= Cu, Ni, Fe, Co)," Fuel, vol. 181, pp. 670-679, 2016.
[14] S. A. Lee et al., "Tailored NiO x/Ni Cocatalysts on Silicon for Highly Efficient Water Splitting Photoanodes via Pulsed Electrodeposition," ACS Catalysis, vol. 8, no. 8, pp. 7261-7269, 2018.
[15] L.-F. Huang, M. Hutchison, R. Santucci Jr, J. R. Scully, and J. M. Rondinelli, "Improved electrochemical phase diagrams from theory and experiment: the Ni–water system and its complex compounds," The Journal of Physical Chemistry C, vol. 121, no. 18, pp. 9782-9789, 2017.
[16] S. Klaus, Y. Cai, M. W. Louie, L. Trotochaud, and A. T. Bell, "Effects of Fe electrolyte impurities on Ni (OH) 2/NiOOH structure and oxygen evolution activity," The Journal of Physical Chemistry C, vol. 119, no. 13, pp. 7243-7254, 2015.
[17] K. Wu, D. Shen, Q. Meng, and J. Wang, "Octahedral Co3O4 particles with high electrochemical surface area as electrocatalyst for water splitting," Electrochimica Acta, vol. 288, pp. 82-90, 2018.
[18] Z. Chen et al., "Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols," Journal of Materials Research, vol. 25, no. 1, pp. 3-16, 2010.
[19] Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical water splitting. Springer, 2013.
[20] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, "Photocatalysts sensitive to visible light-response," Science, vol. 295, no. 5555, pp. 627-627, 2002.
[21] H. P. Maruska and A. K. Ghosh, "Transition-metal dopants for extending the response of titanate photoelectrolysis anodes," Solar Energy Materials, vol. 1, no. 3-4, pp. 237-247, 1979.
[22] H. Kato and A. Kudo, "Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium," The Journal of Physical Chemistry B, vol. 106, no. 19, pp. 5029-5034, 2002.
[23] S. Sze, "Physics of semiconductor devicesWiley Eastern," New York, 1981.
[24] P. D. Tran, L. H. Wong, J. Barber, and J. S. Loo, "Recent advances in hybrid photocatalysts for solar fuel production," Energy & Environmental Science, vol. 5, no. 3, pp. 5902-5918, 2012.
[25] J.-Y. Jung, J.-Y. Yu, and J.-H. Lee, "Dynamic Photoelectrochemical Device with Open-Circuit Potential Insensitive to Thermodynamic Voltage Loss," The journal of physical chemistry letters, vol. 9, no. 18, pp. 5412-5418, 2018.
[26] T. Ogita, Y. Uetake, Y. Yamashita, A. Kuramata, S. Yamakoshi, and K. Ohkawa, "InGaN photocatalysts on conductive Ga2O3 substrates," physica status solidi (a), vol. 212, no. 5, pp. 1029-1032, 2015.
[27] T. Sekimoto et al., "Tandem photo-electrode of InGaN with two Si pn junctions for CO2 conversion to HCOOH with the efficiency greater than biological photosynthesis," Applied Physics Letters, vol. 106, no. 7, p. 073902, 2015.
[28] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, no. 3048, p. 501, 1928.
[29] M. Baker, K. A. Hollywood, and C. Hughes, Biophotonics: Vibrational Spectroscopic Diagnostics. Morgan & Claypool Publishers, 2016.
[30] M. P. Seah and W. Dench, "Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids," Surface and interface analysis, vol. 1, no. 1, pp. 2-11, 1979.
[31] 張立信, "surface chemical anailsis techniques," pp. 17-23.
[32] E. L. Abbe, Henry (ed.). Translated by Fripp, H. E, " A Contribution to the Theory of the Microscope and the Nature of Microscopic Vision," Proceedings of the Bristol Naturalists' Society, pp. 200-261.
[33] B. Inkson, "Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization," in Materials characterization using nondestructive evaluation (NDE) methods: Elsevier, 2016, pp. 17-43.
[34] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, no. 9, p. 930, 1986.
[35] I. S. Bozchalooi, A. C. Houck, J. AlGhamdi, and K. Youcef-Toumi, "Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging," Ultramicroscopy, vol. 160, pp. 213-224, 2016.
[36] A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chemical Society Reviews, vol. 38, no. 1, pp. 253-278, 2009.
[37] Y. K. Chih et al., "NiOx Electrode Interlayer and CH3NH2/CH3NH3PbBr3 Interface Treatment to Markedly Advance Hybrid Perovskite‐Based Light‐Emitting Diodes," Advanced Materials, vol. 28, no. 39, pp. 8687-8694, 2016.
[38] F. Thema, E. Manikandan, A. Gurib-Fakim, and M. Maaza, "Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract," Journal of alloys and compounds, vol. 657, pp. 655-661, 2016.
[39] N. Weidler et al., "X-ray Photoelectron Spectroscopic Investigation of Plasma-Enhanced Chemical Vapor Deposited NiO x, NiO x (OH) y, and CoNiO x (OH) y: Influence of the Chemical Composition on the Catalytic Activity for the Oxygen Evolution Reaction," The Journal of Physical Chemistry C, vol. 121, no. 12, pp. 6455-6463, 2017.
[40] J.-W. Lang, L.-B. Kong, W.-J. Wu, Y.-C. Luo, and L. Kang, "Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors," Chemical Communications, no. 35, pp. 4213-4215, 2008.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-08-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-08-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw