進階搜尋


下載電子全文  
系統識別號 U0026-0608201914195500
論文名稱(中文) CaSnO3共添加Ce3+/Mn4+/Dy3+之製備與光致發光及形成單相暖白光之研究
論文名稱(英文) The photoluminescence of single-phase warm white-light-emitting luminescence using CaSnO3:Ce3+/Mn4+/Dy3+ phosphors
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 陳彥勳
研究生(英文) Yan-Xun Chen
學號 n26064024
學位類別 碩士
語文別 中文
論文頁數 82頁
口試委員 指導教授-黃正亮
口試委員-施權峰
口試委員-尤正祺
口試委員-許正興
口試委員-曾靜芳
中文關鍵字 CaSnO3: Ce3+/Mn4+/Dy3+  螢光粉  單相暖白光  能量轉換 
英文關鍵字 CaSnO3: Ce3+/Mn4+/Dy3+  single-phase  warm white-light-emitting  photoluminescence  co-doped 
學科別分類
中文摘要 本篇論文以固態反應法製備CaSnO3作為主體材料,使用Ce3+、Mn4+以及Dy3+作為活化劑離子,使材料能激發出單相的暖白光,並探討其發光性質等特性。
在激發光為266nm下,在共摻雜0.3%Mn4+於CaSnO3:0.5%Ce3+後,CIE座標從藍色座標(0.1755, 0.1755)調變為暖白色座標(0.3997, 0.4060),相對色溫(CCT)為3758 K。
在激發光為325nm下,在共摻雜0.3%Dy3+於CaSnO3:0.5%Ce3+, 0.2%Mn4+後,CIE座標從藍紫色座標(0.2937, 0.1762)調變為暖白色座標(0.3702, 0.3347),相對色溫(CCT)為3998 K。
而最後根據文獻公式與方法,推算出Ce3+→Mn4+能量轉移的臨界距離(Rc)約為4.5 Å,以及Ce3 +→Mn4+的能量轉移是通過交換相互作用機制所產生。
英文摘要 In this work, CaSnO3:Ce3+/Mn4+/Dy3+ phosphors were synthesized by conventional solid state reaction method. The best concentration of Ce3+ in CaSnO3 host that was excited in 266nm was determined to 0.5%. We successfully turned the CIE of CaSnO3:0.5%Ce3+ from (0.1755, 0.1755) to (0.3997, 0.4060) by using 266 nm laser doping 0.3%Mn4+, and its correlated color temperature (CCT) is 3758 K. In addition, we turned the CIE of CaSnO3:0.5%Ce3+, 0.2%Mn4+ from (0.2937, 0.1762) to (0.3702, 0.3347) by using 325 nm laser doping 0.3%Dy3+, and the CCT is 3998 K. The spectral overlap between the emission band of Ce3+ and the excitation band of Mn4+ supports the occurrence of the energy transfer from Ce3+ to Mn4+. And we speculate that the energy transfer from Ce3+ to Mn4+ was exchange interactions on the basis of Dexter's energy transfer formula.
論文目次 摘要 I
致謝 XI
目錄 XII
表目錄 XVI
圖目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 主體材料結構 3
第二章 理論基礎與文獻回顧 5
2-1 螢光材料介紹 5
2-2 螢光材料發光分類 6
2-2-1 激發源分類 6
2-2-2 螢光材料發光特性分類 8
2-3 發光機制 10
2-3-1 輻射複合發光 11
2-3-2 螢光與磷光 13
2-3-3 螢光體能量的激發與吸收 14
2-3-4 史托克位移(Stokes Shift) 15
2-4 影響發光特性因素 17
2-4-1 主體共價效應(Convalency Effecft) 17
2-4-2 晶格場(crystal field)效應 17
2-4-3 濃度淬滅(Concentration Quenching)效應 17
2-4-4 熱淬滅(Thermal Quenching)效應 18
2-4-5 毒劑現象(Poisoning) 19
2-5 能量轉移(Energy Transfer) 20
2-6 色彩簡介 23
2-6-1 色溫與相對色溫(Correlated Color Temperature, CCT) 23
2-6-2 演色性指標(Color Rendering Index, CRI) 25
2-6-3 色度座標圖(CIE Chromaticity Diagram) 26
2-7 固態反應法 27
第三章 實驗步驟與方法 29
3-1 實驗材料 29
3-2 實驗流程 30
3-2-1 粉末的製備與球磨 31
3-2-2 粉末的煆燒 31
3-3 分析儀器與方法 32
3-3-1 X光繞射分析 32
3-3-2 螢光光譜特性與拉曼光譜(Raman Spectra)分析 33
3-3-3 生命週期螢光光譜分析 34
3-3-4 掃描式電子顯微鏡(SEM)分析 35
3-3-5 EDS元素分析(EDS) 35
3-3-6 量子效率分析(Quantum efficiency, QE) 36
第四章 實驗結果與討論 37
4-1 CaSnO3摻雜Ce3+、Mn4+、Dy3+之結構探討 37
4-1-1 XRD分析 37
4-1-2 SEM分析 38
4-1-3 EDS分析 39
4-1-4 Raman分析 40
4-2 以激發光源為266 nm下CaSnO3: Ce3+之特性探討 43
4-2-1 PLE分析 43
4-2-2 PL分析 44
4-2-3 C.I.E.色度座標圖 48
4-3 激發光源為266 nm下CaSnO3: Ce3+/Mn4+之特性探討 50
4-3-1 PL分析 50
4-3-2 C.I.E.色度座標圖 51
4-4 Ce3+與Mn4+的能量轉移與發光衰減分析 54
4-4-1 光譜重疊分析 54
4-4-2 PL強度分析 55
4-4-3 發光衰減分析 56
4-4-4 能量轉移臨界距離 58
4-4-5 能量轉移交互機制 59
4-5 激發光源為325 nm下CaSnO3: Ce3+/Mn4+之特性探討 62
4-5-1 PL分析 62
4-5-2 C.I.E.色度座標圖 63
4-6 激發光源為325 nm下CaSnO3: Ce3+/Mn4+/Dy3+之特性探討 65
4-6-1 PL分析 65
4-6-2 C.I.E.色度座標圖 66
第五章 結論 69
5-1 CaSnO3:Ce3+/Mn4+/ Dy3+之結構分析 69
5-1-1 CaSnO3:Ce3+/Mn4+/ Dy3+的XRD相組成分析 69
5-1-2 CaSnO3:Ce3+/Mn4+/Dy3+之拉曼光譜分析 70
5-1-3 CaSnO3:Ce3+/Mn4+/Dy3+之SEM、EDS分析 71
5-2 激發光源為266 nm下CaSnO3: Ce3+/Mn4+之特性分析 73
5-3 激發光源為325 nm下CaSnO3: Ce3+/Mn4+/Dy3+之特性分析 75
5-4 CaSnO3:Ce3+, Mn4+的能量轉移與發光衰減分析 76
第六章 未來展望 78
參考文獻 79
參考文獻 N.M. 1 Zhang, C.F. 1Guo, L.Q. 1Yin, J.H. 1 Zhang, M.M. Wu, 1Red emitting phosphors of Eu3+doped Na2Ln2Ti3O10(Ln = Gd, Y) for white light emitting diodes, 1J. Alloys Compd. 635, 2015:pp. 66–72.
2. W. Lü, W. Zh. Lv, Q. Zhao, M.M. 1Jiao, B.Q. Shao, H.PP. You, Generation of orange and green 1emissions in Ca2GdZr2(AlO4)3:Ce3+, Mn2+, Tb3+garnets via energy transfer1 with Mn2+and Tb3+as acceptors, J. Mater. 1Chem. 1 C 3, 1 2015:pp.2334–2340.
3. H. Lin, B. Wang, J. Xu, R. Zhang, H. Chen, Y.L. Yu, Y. Sh, Wang, phosphor-in-glass for high-powered remote-type white AC-LED ACS, Appl. Mater. Interfaces 23, 2014 :pp.21264–21269.
4. N. Komuro, M. Mikami, PP.J. Saines, K. Akimoto, A.K. Cheetham, Deep red emission in Eu2+-activated Sr4(PO4)2O phosphors for blue-pumped white LEDs, J. Mater. Chem. C 3, 2015:pp. 7356–7362.
5. 如熹, 劉., 發光二極體用氧氮螢光粉介紹. 12006: 1111全華科技圖書.
6. Lin, C.C., Y.S. 1Zheng, H.Y. 1Chen, 1 C.H. 1Ruan, G. 1W.Xiao, and R.S.Liu, Improving Optical Properties of White LED1 Fabricated by a Blue LED Chip with Yellow/Red Phosphors. Journal of Electrochemical Society,2010.157(9):pp.II900-II903.
7. G. Seeta Rama Raju , Jin Young Park , Hong Chae Jung , E. Pavitra , Byung Kee Moon , Jung Hyun Jeong, and Jung Hwan Kim, Excitation induced efficient luminescent properties of nanocrystalline Tb3+/Sm3+:Ca2Gd8Si6O26 phosphors. Journal of Materials Chemistry, 2011, 21:pp. 6136-6139.
8. Yahong Jin, Yihua Hu, 1Haoyi Wu, 1He Duan, 1Li Chen, 1Yinrong Fu, 1Guifang Ju, 1Zhongfei Mu, Miao He, 1A deep red phosphor Li2MgTiO4:Mn4+exhibiting abnormal1 emission:Potential application as color converter for warm w-LEDs. Chemical Engineering Journal, 2016.288:pp.596-607.
9. Chien-Hao Huang, 1Teng-Ming Chen, 1A Novel Single-Composition Trichromatic White-Light Ca3Y(GaO)3(BO3)4:Ce3+,Mn2+,Tb3+Phosphor for UV-Light Emitting Diodes. Journal 1of Physical Chemistry, 2011, 115:pp. 2349–2355.
10. Tian, Y.,B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, 1and H. Zhong, Self-assembled 3D flower-shaped NaY(WO4)2:Eu3+ microarchitectures: Microwave-assisted hydrothermal synthesis, growth mechanism and 1luminescent properties. CrystEngComm, 2012. 14(5):pp. 1760-1769.
11. Xu, Z., C. Li, G. Li, R. Chai, C.Peng, D. Yang, and J. Lin, Self-Assembled 3D Urchin-Like NaY(MoO4)2: 1Eu3+/Tb3+ Microarchitectures: 1 Hydrothermal Synthesis and Tunable Emission Colors. J. Phys. Chem. C, 2010.114(6):pp. 2573-2582.
12. Bowen Zhang, Mingming Shi, Dongyun Zhang, Yunyun Guo,
Chengkang Chang1, 1WeiJie Song, The comparison: photoluminescence and afterglow behavior in CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors. J Mater Sci: Mater Electron, 2017.28:pp.11624–11630.
13. X. Wu, Y. Jiao, Qiang Ren, Ou Hai, F. Lin, H. Li, W. Bai, Photoluminesce nce and energy transfer in Sr3La(BO3)3:Ce, Sm and Sr2TiO4:Sm, Eu phosphors. Optics and Laser Technology, 2018, 108:pp. 456–465.
14. T. Jiang, X. Yu, X. Xu, et al., Tunable emitting-color and energy transfer of KCaY(PO4)2:Ce3+, Tb3+phosphors for UV-excited white light-emitting-diodes, Mater. Res. Bull, 2014, 51:pp. 80–84.
15. J. Zhao, N. L. Ross, R. J. Angel, Phys. Chem. Miner. 2004, 31, 299.
16. Du, M.H., Using DFT Methods to Study Activators in Optical Materials. Ecs Journal of Solid State Science And Technology, 2016.5(1):pp. R3007-R3018.
17. Bradley PP. Barber, R. A.Hiller, R. Löfstedt, S. J. Putterman, K. R.Weninger, Defining the unknowns of sonoluminescence. Physics Reports, 1997, 281 (2):pp. 65-143.
18. 如熹, 劉.等.,紫外光發光二極體用螢光粉介紹.2003: 全華科技圖書
19. Blass, G. and B. Grabmaier, Luminescent Materials. Springer Science and Business Media, 2012.
20. Henderson, B. and G.F. Imbusch, Optical Spectroscopy of Inorganic Solids. Oxford University Press, 2006.
21. V. 1Bachmann, 1C. Ronda, 1A. Meijerink, 1Temperature Quenching of Yellow Ce3+ 1Luminescence in YAG: 1Ce. Chem. Mater, 12009, 21(10):pp. 2077-2084.
22. Pranav 1Kumar, 1Usha Mina, 1 Fundamentals and1 Techniques of Biophysics and Molecular Biology, 12016:p34.
23. Vij, D. R., Luminescence of Solids. Springer Science and Business Media, 2012.
24. H. Guo, H. Zhang, J. Li, et al., Blue-white-green tunable luminescence from Ba2Gd2Si4O13:Ce3+, Tb3+ phosphors excited by ultraviolet light, Opt.Express 18 , 2010, 27257.
25. G.V.L. Reddy, L.R. Moorthy, PP. Packiyaraj, et al., Optical characterization of YAl3(BO3)4:Dy3+-Tm3+phosphors under near UV excitation, Opt. Mater, 2013, 35 :pp. 2138–2145.
26. Kenyon, A.J., Recent developments in rare-earth doped materials for optoelectronics. Progress in Quantum Electronics, 2002. 26(4-5): pp. 225-284.
27. Kitai, A.H., Solid State Luminescence: Theory, materials and devices. Springer Science and Business Media, 2012.
28. H. Li, H. B. Liu, X. M. Tao, J. Su, PP. F. Ning, X. F. Xu, Y. Zhou, W. Gu, and X. Liu, Novel single component tri-rare-earth emitting MOF for warm white light LEDs. Dalton Trans., 2018, 47:pp. 8427–8433.
29. T.C. Chien, C.S. 1Hwang, M. Yoshimura, and Y.T. Nien, Synthesis and photoluminescence properties of fluorite-related (Y1−xEux)10W2O21 phosphor, Ceramics 1International, 2015, 44(6):pp. 155-161.
30. Gardiner, D.J., 1Practical Raman spectroscopy. 1Springer-Verlag, 1989.
31. J. Kung, Y. J. 1Lin, and C. M. Lin, Phonon behavior of CaSnO3 perovskite under pressure. J. Chem. Phys., 2011, 135.
32. S. Liu, Y. Lianga, Y. 1Zhua, X. Wu, R. Xu, M. Tong, 1Kai Li, Synthesis and luminescence1 properties of novel Ce3+ doped BaZrSi3O9 phosphors. Optics & Laser Technology, 2016, 84:pp. 1–8.
33. Dexter, 1 D.L. and J.H. 1Schulman, Theory of 1Concenteration 1Quenching in Inorganic Phosphors. Journal of 1Chemical Physics, 11954. 22(6):pp.1063-1070.
34. Blasse, G., Energy Transfer in Oxidic Phosphors. Philips Research Report, 1969. 24(2).
35. R. Cao, W. Wang, J. Zhang, S. Jiang, Z. Chen, W. Li, X. Yu, Synthesis and luminescence properties of Li2SnO3:Mn4+ red-emitting phosphor for solid-state lighting. Journal of Alloys and Compounds, 2017, 704:pp. 124-130.
36. Batentschuk, M., Osvet, A., Schierning, G., Klier, A., Schneider, J., Winnacker, A. Radiat. Meas. 2004, 38, 539.
37. H. Chen, H. Lin, Q. Huang, F. Huang, et al., A novel double-perovskite Gd2ZnTiO6:Mn4+ red phosphor for UV-based w-LEDs: structure and luminescence properties. 1J. Mater. Chem. 1C, 2016. 4(12):pp. 2374-2381.
38. X. Wu, Y. Jiao, Q. Ren, O. Hai, F. Lin, H. Li, W. Bai, Photoluminescence and energy transfer in Sr3La(BO3)3:Ce, Sm and Sr2TiO4:Sm, Eu phosphors. Optics and Laser Technology, 2018, 108:pp. 456–465.
39. Huang, C. H., Chen, T.-M., Liu, W. R., Chiu, Y. C., Yeh, Y. T., Jang, S. M. ACS Appl. Mater. Interfaces 2010, 2, 259.
40. Huang, C. H.,and Chen, T.-M. Opt. Express 2010, 18, 5089.
41. Paulose, PP. I., Jose, G., Thomas, V., Unnikrishnan, N. V., Warrier, M. K. R. J. Phys. Chem. Solids 2003, 64, 841.
42. Y. Jin, Y. Hu, L. Chen, et al., A novel emitting color tunable phosphor Ba3Gd(PO4)3:Ce3+, Tb3+based on energy transfer, Physica B, 2014, 436:pp. 105–110.
43. Z. Xia, R.S. Liu, Tunable blue-green color emission and energy transfer of Ca2Al3O6F:Ce3+, Tb3+ phosphors for near-UV white LEDs. J. Phys. Chem. C, 2012, 116:pp. 15604–15609.
44. B. Zhang, M. Shi, D. Zhang, Y. Guo, C. K. Chang, W. J. Song, The comparison: photoluminescence and afterglow behavior in CaSnO3:Dy3+ and Ca2SnO4:Dy3+ phosphors. J Mater Sci: Mater Electron, 2017, 28:pp. 11624–11630.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw