進階搜尋


 
系統識別號 U0026-0608201817424400
論文名稱(中文) 可準確計算多級渦輪機流場的紊流模型之研究
論文名稱(英文) A study on turbulence models for accurate prediction in multistage turbine flows
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 106
學期 2
出版年 107
研究生(中文) 計柏安
研究生(英文) Po-An Chi
學號 P46051351
學位類別 碩士
語文別 中文
論文頁數 126頁
口試委員 指導教授-陳文立
口試委員-李約亨
口試委員-吳毓庭
中文關鍵字 計算流體力學  紊流模型  渦輪機葉片  壓縮機葉片 
英文關鍵字 CFD  Turbulence model  Compressor/turbine blades 
學科別分類
中文摘要 透過改善CFD模擬渦輪發動機的預測精確度,對使用數值方法設計渦輪機是非常重要的,而其中紊流模型的選用會對最終模擬結果產生很大的影響,故本研究會對不同紊流模型的最終模擬結果進行比較分析。本研究使用CD-adapco所開發的的套裝軟體STAR-CCM+,並從中選擇三種學術界及產業界常用的紊流模型(k-ω SST、k-ε low-Re、 )分別對二維壓縮機及三維渦輪機葉片進行模擬分析,以預測流場中層流過渡流、分離流、尾渦流等流場特性,並透過比較邊界層厚度、壓力、速度等流場狀況,找出最適合用於模擬具有複雜流動情形的渦輪機葉片流場的紊流模型。
最終模擬結果顯示, 紊流模型不管在分離流動、層流過渡流,高流線曲率所引起的效應等流場狀況中,其模擬準確度皆優於另兩種紊流模型,適合用於模擬渦輪機葉片流場,對具有較複雜流動狀況的流場具有良好的模擬精確度。
英文摘要 Improving the predictive accuracy of CFD analysis is very important for using numerical methods to design turbines, and the selection of the turbulence model poses great impact on the accuracy of simulation results. In this study, we use different turbulence models to compute multi-stage rotor/stator flows in turbomachines and the simulation results are analyzed and compared with experimental data. Three turbulence models, k-ω SST, k-ε low-Re, and , commonly used in academia and industry are selected to investigate flows over 2D compressor blades and 3D turbine blades where complicated flow characteristics such as leading- and trailing-edge separations, transition, and wake vortices are present. By comparing boundary layer thickness, blade-surface pressure, velocity, and other flow field quantities, the turbulence model that gives rise to the most accurate results can be found. The conclusion is that the turbulence model is more accurate than the other two turbulence models for turbomachine flows. The results indicate that model can return credible prediction in flows involving complex flow characteristics.
論文目次 摘要 I
Extended Abstract II
誌謝 XI
目錄 XII
表目錄 XV
圖目錄 XVI
符號說明 XXIII
第1章 緒論 1
1.1前言 1
1. 2研究背景 2
1. 3研究目的及動機 4
1. 4文獻回顧 7
1. 5論文架構 21
第2章 紊流模型與數值方法 22
2. 1數值方法 22
2. 2統御方程式 23
2.2.1雷諾平均N-S方程(RANS) 24
2. 3紊流模型 28
2.3.1 k-ω SST 紊流模型 28
2.3.2 k-ε low-Re 紊流模型 31
2.3.3 k-ε 紊流模型 33
第3章 研究方法 37
3. 1 二維壓縮機葉片 37
3.1.1 物理模型之建立 38
3.1.2 網格產生 40
3.1.3 初始條件及邊界條件 45
3.1.4 數值運算 45
3.1.5 後處理 45
3. 2 三維渦輪機葉片 46
3.2.1 物理模型之建立 46
3.2.2 網格產生 49
3.2.3初始條件及邊界條件 49
3.2.4數值運算 52
3.2.5 後處理 52
第4章結果與討論 53
4.1二維葉片模擬結果與分析 53
4.1.1雙圓弧葉片(DCA Blade)模擬結果與分析 53
4.1.2 可控擴散葉片模擬結果與分析 77
4.2三維葉片模擬結果與分析 94
4.2.1網格獨立性測試 94
4.2.2 三維葉片模擬結果與分析 100
第5章 結論與未來展望 117
5. 1結論 117
5. 2未來展望 119
參考文獻 120
參考文獻 [1] 西安交通大學渦輪機教研室編,'燃汽輪機裝置.", 1975.
[2] 蘇文慶, "燃氣渦輪機之應用與效能提升."
[3] O. P. Sharma, G. F. Pickett, and R. H. Ni, "Assessment of Unsteady Flows in Turbines," no. 79085, 1990.
[4] 吳振源, "氣渦輪機進氣導片及轉子葉片交互作用之非定常流場數值研究," 兵器系統工程研究所, 2000.
[5] P. Tucker, "Computation of unsteady turbomachinery flows: Part 1—Progress and challenges," Progress in Aerospace Sciences, vol. 47, no. 7, pp. 522-545, 2011.
[6] N. Gourdain, "Prediction of the unsteady turbulent flow in an axial compressor stage. Part 1: Comparison of unsteady RANS and LES with experiments," Computers & Fluids, vol. 106, pp. 119-129, 2015.
[7] D. A. Rains, "Tip clearance flows in axial flow compressors and pumps," California Institute of Technology, 1954.
[8] R. P. Dring, W. D. Sprout, and H. D. Weingold, "A Navier-Stokes Analysis of the Effect of Tip Clearance on Compressor Stall Margin," no. 78781, pp. V001T01A049, 1995.
[9] W. S. Yu, B. Lakshminarayana, and D. E. Thompson, "Computation of Three-Dimensional Viscous Flow in High Reynolds Number Pump Guide Vane," Journal of Fluids Engineering, vol. 118, no. 4, pp. 698-705, 1996.
[10] H. P. Hodson, "Modeling Unsteady Transition and Its Effects on Profile Loss," Journal of Turbomachinery, vol. 112, no. 4, pp. 691-701, 1990.
[11] O. SHARMA, T. BUTLER, R. DRING, and H. JOSLYN, "Rotor-stator interaction in multi-stage axial-flow turbines," in 24th Joint Propulsion Conference, 1988, pp. 3013.
[12] H. Pfeil, R. Herbst, and T. Schröder, "Investigation of the Laminar-Turbulent Transition of Boundary Layers Disturbed by Wakes," no. 79566, p. V001T01A050, 1982.
[13] S. Wittig, K. Dullenkopf, A. Schulz, and R. Hestermann, "Laser-Doppler Studies of the Wake-Effected Flow Field in a Turbine Cascade," Journal of Turbomachinery, vol. 109, no. 2, pp. 170-176, 1987.
[14] Y. Elazar and R. P. Shreeve, "Viscous Flow in a Controlled Diffusion Compressor Cascade With Increasing Incidence," Journal of Turbomachinery, vol. 112, no. 2, pp. 256-265, 1990.
[15] G. H. Dibelius and E. Ahlers, "Influence of Periodically Unsteady Wake Flow on the Flow Separation in Blade Channels," Journal of Turbomachinery, vol. 114, no. 1, pp. 108-113, 1992.
[16] M. D. Barringer, K. A. Thole, and M. D. Polanka, "Experimental Evaluation of an Inlet Profile Generator for High-Pressure Turbine Tests," Journal of Turbomachinery, vol. 129, no. 2, pp. 382-393, 2006.
[17] D. T. Booth and A. B. Flegel, "Comparison of computational and experimental results for a transonic variable-speed power-turbine blade operating with low inlet turbulence levels," in "NASA," 2017.11.23.
[18] W. F. Colban, K. A. Thole, and G. Zess, "Combustor Turbine Interface Studies—Part 1: Endwall Effectiveness Measurements," Journal of Turbomachinery, vol. 125, no. 2, pp. 193-202, 2003.
[19] W. F. Colban, A. T. Lethander, K. A. Thole, and G. Zess, "Combustor Turbine Interface Studies—Part 2: Flow and Thermal Field Measurements," Journal of Turbomachinery, vol. 125, no. 2, pp. 203-209, 2003.
[20] W. C. Zierke and W. A. Straka, "Flow visualization and the three-dimensional flow in an axial-flow pump," Journal of Propulsion and Power, vol. 12, no. 2, pp. 250-259, 1996.
[21] T. Simon, S. Qiu, K. Yuan, D. Ashpis, and F. Simon, Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions. 2000.
[22] R. C. Schmidt and S. V. Patankar, "Simulating Boundary Layer Transition With Low-Reynolds-Number k–ε Turbulence Models: Part 1—An Evaluation of Prediction Characteristics," Journal of Turbomachinery, vol. 113, no. 1, pp. 10-17, 1991.
[23] R. C. Schmidt and S. V. Patankar, "Simulating Boundary Layer Transition With Low-Reynolds-Number k–ε Turbulence Models: Part 2—An Approach to Improving the Predictions," Journal of Turbomachinery, vol. 113, no. 1, pp. 18-26, 1991.
[24] C. K. G. Lam and K. Bremhorst, "A Modified Form of the k-ε Model for Predicting Wall Turbulence," Journal of Fluids Engineering, vol. 103, no. 3, pp. 456-460, 1981.
[25] P. Prinos, A. Goulas, and G. Theodoridis, "Prediction of transition in boundary-layer flows-A comparison of various low-Re turbulence models," in 10th Symposium on Air Breathing Engines, 1991, vol. 2, pp. 830-836.
[26] R. Narasimha, Recent advances in the dynamics of the transition zone. 2018.
[27] N. L. Sanger, L. R. Center, and O. Cleveland, "THE MEASUREMENT OF BOUNDARY LAYERS ON ACOMPRESSOR BLADE IN CASCADE," in "NASA," 1986.
[28] L. P. TIMKO, "ENERGY EFFICIENT ENGINE - HIGH PRESSURE TURBINE COMPONENT TEST PERFORMANCE REPORT1," in NASA.
[29] L. P. TIMKO, "ENERGY EFFICIENT ENGINE - HIGH PRESSURE TURBINE COMPONENT TEST PERFORMANCE REPORT2', NASA.
[30] F. R. Menter, "Performance of popular turbulence model for attached and separated adverse pressure gradient flows," AIAA Journal, vol. 30, no. 8, pp. 2066-2072, 1992.
[31] D. C. Wilcox, "Comparison of two-equation turbulence models for boundary layers with pressure gradient," AIAA Journal, vol. 31, no. 8, pp. 1414-1421, 1993/08/01 1993.
[32] D. C. Wilcox, "Turbulence Modeling for CFD," 1998.
[33] B. E. Launder and D. B. Spalding, "The numerical computation of turbulent flows," Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 2, pp. 269-289, 1974.
[34] J. E. Bardina, Huang, P.G., Coakley, T.J., "Turbulence Modeling Validation, Testing, and Development," 1997.
[35] W. L. C. F.S. Lien, M.A. Leschziner, "Low-Reynolds number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations," 2012.
[36] F.-S. Lien and G. Kalitzin, "Computations of transonic flow with the v2–f turbulence model," International Journal of Heat and Fluid Flow, vol. 22, pp. 53-61, 2001.
[37] F. Lien, G. Kalitzin, and P. Durbin, "RANS modeling for compressible and transitional flows," Proceedings of the Stanford University Center for Turbulence Research Summer Program, pp. 267-286, 1998.
[38] P. Durbin, "On the k-3 stagnation point anomaly,," International journal of heat and fluid flow, vol. 17, no. 1, pp. 89-90, 1996.
[39] L. Davidson, P. Nielsen, and A. Sveningsson, Modification of the v2f model for computing the flow in a 3D wall jet. 2003, pp. 577-584.
[40] STAR-CCM+, "STAR-CCM+ Tutorial'
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw