進階搜尋


下載電子全文  
系統識別號 U0026-0608201723575900
論文名稱(中文) 二維力平衡儀設計&布料粗糙度對圓柱空氣動力特性之影響
論文名稱(英文) The design of 2D force balance and the effect of textile roughness on the aerodynamic characteristic of a circular cylinder
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 105
學期 2
出版年 106
研究生(中文) 蔡宗修
研究生(英文) Zong-Xiu Tsai
學號 P46044401
學位類別 碩士
語文別 英文
論文頁數 203頁
口試委員 指導教授-苗君易
口試委員-周榮華
口試委員-尤芳忞
口試委員-呂宗行
中文關鍵字 力平衡儀  校驗矩陣  臨界區  快速傅立葉轉換  表面粗糙度 
英文關鍵字 force balance  calibration matrix  critical regime  Fast Fourier Transform  surface roughness 
學科別分類
中文摘要 本研究主要分為力平衡儀的建構與不同表面粗糙度之鈍形體空氣動力實驗。第一部分主要是在國立成功大學-流體感測系統實驗室自製外置式力平衡儀,以增進對鈍形體空氣動力的研究能量。過程中製造二維力平衡儀,採用四顆稱重感測器(Load Cell),找出力量與電壓的變化,並且經由反覆校驗得出其量測不確定度確認儀器的精確度並找出其校驗矩陣。為確認儀器的準確性,於風洞中量測圓柱模型,其結果與文獻呈現高度一致性。最後將其應用於之後的風洞實驗中。
第二部分以實驗方法探討圓柱流場於雷諾數7ⅹ104~4ⅹ105之間的各種物理特性。實驗利用圓柱兩側θ=±90o之壓力孔訊號作為判斷的依據,作為圓柱流場隸屬於次臨界區、單分離泡區、雙分離泡區乃至於進入超臨界區之依據。
實驗利用不同粗糙度之布料套於圓柱模型上進行各種試驗。以快速傅立葉轉換(Fast Fourier Transform)求得升力訊號之渦流溢放訊號。相對於光滑表面,在不同粗糙度下,圓柱流場提前發生,但仍存在著臨界區轉換的現象,特別針對預臨界區、單分離泡區、雙分離泡區進行量測,分析阻力和升力的擾動值,觀察是否有間歇性現象發生。同時將阻力係數與其發生時之雷諾數、θ=±90o之壓力係數與相對粗糙度做比較,發現它們之間呈現一規律分布,可用回歸方法得到關係式。這不僅更進一步顯示出粗糙度對於流場的影響,也對於鈍形體的減阻有更深的了解。
英文摘要 Present research aims on the construction of force balances and the surface roughness effect on bluff bodies. The first part is to build external force balances in the Flow Sensing System Laboratory, National Cheng Kung University, for wind tunnel testing to improve the capability of experimental investigation into fluid flow around bluff bodies. We developed a two-dimension balance. It was designed for measuring drag force and side force, which consists of four load cells. In order to find out the relation between the output voltage and the applied load, we did calibration several times to get the measurement uncertainty for accuracy and a calibration matrix. A circular cylinder model was tested by the balance in the wind tunnel, and it revealed a great consistency compared to the result from the literature. Afterwards, it was applied to the wind-tunnel experiments.
The second part is to investigate the phenomenon of flow around a circular cylinder at Reynolds numbers between 7×104 and 4×105. The pressure taps signals were used to determine the pre-critical regime, one-bubble regime, two-bubble regime and the supercritical regime.
The experiment used a circular cylinder fitted by textile with different relative roughness. The force signals obtained were analyzed with fast Fourier transform to get the shedding frequency. This study shows in the case of different surface relative roughness, each flow state still exists and occurs at lower Reynolds number. That surface roughness can contribute great drag reduction to bluff bodies. Drag and lift signals were analyzed to look for the intermittency effect. Then we compared relative roughness from each textile to their critical Reynolds number, drag coefficient and pressure coefficient on ±90o. It revealed a relation between them and can be expressed by a regression curve.
論文目次 中文摘要 I
英文摘要 III
誌謝 V
Outline VI
List of Tables IX
List of Figures X
Nomenclature XVIII

Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Survey 2
Flow Regimes of a circular cylinder 2
1.3 Objective 6
1.4 Research Approaches 7

Chapter 2 Experiment Setup and Methodology 9
2.1 Experiment Apparatus 9
2.1.1 Cylinder model 9
2.1.2 Wind tunnel 9
2.1.3 Coordinate System 9
2.1.4 Pitot Tube 10
2.1.5 Pressure Transducer 10
2.1.6 3D Laser Scanning Microscope 10
2.1.7 Textiles 11
2.1.8 Two-Dimensional Force balance and Amplifier 11
2.1.9 Data Acquisition System 11
2.2 Experiment Methodology 11
2.2.1 Velocity 12
2.2.2 Reynolds Number 12
2.2.3 Pressure Coefficient 13
2.2.4 Drag and Lift Coefficient 14
2.2.5 Fast Fourier Transform 14
2.2.6 Relative Roughness 15

Chapter 3 Design of Two-dimensional external wind tunnel balance 16
3.1 Introduction 16
3.2 Literature Survey 16
3.3 Balance Design 19
3.4 S-Beam Load Cells and Self-made amplifier 20
3.5 Calibration and the uncertainty of the balance 20
3.6 Test and Application 23
3.7 Conclusion 24

Chapter 4 Textile roughness measurement 25
4.1 Introduction 25
4.2 Literature Survey 25
4.3 Fabric Samples of textile 28
4.4 Methodology for Microstructural Analysis 29
4.5 Measurement of textile surface profile 31
4.6 Conclusion 32

Chapter 5 Experiment Result 33
5.1 Aerodynamic properties of textiles 33
5.1.1 Smooth Cylinder 33
5.1.2 # 19 34
5.1.3 # 21 35
5.1.4 # 24 36
5.1.5 # 1-1 37
5.1.6 # 2-2 37
5.1.7 # 3-1 38
5.1.8 # 4-2 39
5.1.9 # 5-1 40
5.1.10 # 6-2 41
5.1.11 # 7-1 41
5.1.12 # 8-1 42
5.1.13 # 9-1 43
5.1.14 # 10-1 44
5.1.15 # 11-1 45
5.1.16 # 12-1 45
5.1.17 # 13-1 46
5.1.18 # 1’-1 47
5.1.19 # 4’-1 48
5.1.20 # 5’-2 49
5.1.21 # 7’-1 49
5.1.22 # 8’-1 50
5.1.23 # 13’-1 51
5.2 Comparison 52
5.2.1 Critical Reynolds number 52
5.2.2 Minimum Drag Coefficient 53
5.2.3 Mean Pressure Coefficient at θ = ±90o 54
5.2.4 CDrms and CLrms 54
5.2.5 Fabric Type 54

Chapter 6 Conclusion 56

Chapter 7 Future Work 59

Reference 60
參考文獻 [1] S. F. Hoerner, “Fluid Dynamic Drag.” pp.564-565, 1965
[2] J. R. Shanebrook, R. D. Jaszczak, “Aerodynamics of the Human Body” Biomechanics IV. International Series on Sport Sciences. pp.567-571, 1974
[3] C. Wieselsberger, “New Data on the Law of Hydro and Aerodynamics Resistance” Physikalsche Zeitschrift, Vol.22, pp.321-328, 1922
[4] L. Brownile, “Influence of Apparel on Aerodynamic Drag in Running” The Annals of Physiological Anthropology, 6(3): pp.133-143, 1987
[5] L. Brownile, “Aerodynamic Characteristics of Sports Apparel” 1992
[6] H. Chowdhury, F. Alam, D, Mainwaring, A. Subic, M, Tate, D, Forster, J. Beneyto-Ferre, “Design and Methodology for Evaluating Aerodynamic Characteristics of Sports Textiles” Sports Technology, 2(3-4): 81-6, 2009
[7] L. Oggiano, L. Sæter, S. Loset, R. Winther, “Reducing the Athlete’s Aerodynamical Resistance” Journal of Computational and Applied Mechanics, 8(2): pp.163-173, 2004
[8] L. Oggiano, L. Sæter, “Effect of Different Skin Suits on Speed Skating Performances” Computer Science in Sports, 3: pp.139-144, 2008
[9] A. Roshko, “On the Development of Turbulent Wakes from Vortex Streets.” NACA TN 21913, 1953
[10] A. Roshko, “On the Persistence of Transition in the Near Wake.” S. I. A. M. Problems of Hydrodynamics and Continuum Mechanics, 606-616, 1969
[11] M. M. Zdravkovich, “Conceptual Overview of Laminar and Turbulent Flows past Smooth and Rough Circular Cylinders.” Journal of Wind Engineering and Industrial Aerodynamics, Vol.33, pp.53-62, 1990
[12] I. Tani, “Low-Speed Flows involving Bubble Separations” Progr. Aero. Sci., Vol. 5, pp. 70-103, 1964
[13] A. Roshko, “Experiments on the Flow past a Circular Cylinder at very High Reynolds Number” Journal of Fluid Mechanics, Vol. 10, pp. 345-356, 1961
[14] C. Farell, J. Blessman, “On Critical Flow around Smooth Circular Cylinders” Journal of Fluid Mechanics, Vol. 136, pp. 375-391, 1982
[15] P.W. Bearman, “On Vortex Shedding from a Circular Cylinder in the Critical Regime” Journal of Fluid Mechanics, Vol. 37, pp. 577-585, 1969
[16] G. Schewe, “On the Force Fluctuations acting on a Circular Cylinder in Cross Flow from Subcritical up to Transcritical Reynolds Numbers” Journal of Fluid Mechanics,
Vol. 133, pp. 265-283, 1983
[17] E. Achenbach, E. Reinecke, “On Vortex Shedding form Smooth and Rough Cylinders in the range of Reynolds numbers 6105 to 5106” Journal of Fluid Mechanics, Vol. 109, pp. 239-251, 1981
[18] R. I. Basu, “Aerodynamic Forces on Structures of Circular Cross-Section. Part 1. Model-Scale Data obtained under Two-Dimensional Conditions in Low-Turbulence Streams” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 21, pp. 273-294, 1985
[19] A. Roshko, “Perspectives on bluff body aerodynamics” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 49, pp. 79-100, 1993
[20] O. Güven, C. Farell, V. C. Patel, “Surface-Roughness Effects on the Mean Flow Past Circular Cylinders” Journal of Fluid Mechanics, Vol. 98, pp. 673-701, 1980
[21] A. Fage, J. H. Warsap, “The Effects of Turbulence and Surface Roughness on the Drag of a Circular Cylinder” Aeronautical Research Committee, Reports and Memoranda No. 1283, 1929
[22] E. Achenbach, “Influence of Surface Roughness on the Cross-Flow around a Circular Cylinder” Journal of Fluid Mechanics, Vol. 46, pp. 321-335, 1971
[23] Y. Nakamura, Y. Tomonari, “The Effects of Surface Roughness on the Flow past Circular Cylinders at High Reynolds Numbers” Journal of Fluid Mechanics, Vol. 123, pp. 363-378, 1982
[24] J. L. D. Ribeiro, “Effects of Surface Roughness on the Two-Dimensional Flow past Circular Cylinders I: Mean Forces and Pressures” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 37, pp. 299-309, 1991
[25] W. C. L. Shih, C. Wang, D. Coles, A. Roshko, “Experiments On Flow Past Rough Circular Cylinders at Large Reynolds Numbers” Journal of Wind Engineering and
Industrial Aerodynamics, Vol. 49, pp. 351-368, 1993
[26] P. W. Bearman, J. K. Harvey, “Control of Circular Cylinder Flow by the use of Dimples” AIAA Journal, Vol. 31, No. 10, pp. 1753-1756, 1993
[27] R. M. Laing, “Clothing, Textiles and Human Performance - a Critical Review of the Effect on Human Performance of Clothing and Textiles” Textile Progress, Manchester, Textile Institute, 2002
[28] H. Chowdhury, F. Alam, “An Experimental Investigation on the Aerodynamic Drag Coefficient and Surface Roughness Properties of Sport Txtiles” Journal of the Textile Institute, Vol. 105, No. 4, pp. 414-422, 2013
[29] L. Oggiano, L. Sætran, S. Løset, R. Winther, “Reducing the Athlete’s Aerodynamic Resistance” Journal of Computational and Applied Mechanics, pp. 163-173, 2007
[30] L. Oggiano, O. Troynikov, I. Konopov, A. Subic, F. Alam, “Aerodynamic Behavior of Single Sport Jersey Fabrics with Different Roughness and Cover Factors” Sports Engineering, Vol. 12, No. 1, pp. 1-16, 2009
[31] L. Underwood, M. C. Jermy, “Fabric Testing for Cycling Skinsuits” In: 5th Asia-Pacific Congress on Sports Technology (APCST), Vol. 13, pp. 350-356, 2011
[32] H. Moria, H. Chowdhury, F. Alam, A. Subic, “Aerodynamic Behavior of Stretchable Sports Fabrics” Sports Technology Special Issue: Australian Sports Technology, Vo4, pp. 171-177, 2012
[33] C. F. Sæter, “Development of a Low Drag Suit for Sprint Races” Norwegian University of Science and Technology, 2013
[34] L. M. Bardal, L. Oggiano, O. Troynikov, I. Konopov, “Influence of Fabric Structural Attributes on Their Aerodynamic Behavior” Journal of Engineered Fibers and Fabrics, Vol. 8, No. 8, pp.112-124, 2013
[35] B. Zhou, X. Wang, W. M. Gho, S. K. Tan, “Force and Flow Characteristics of a Circular Cylinder with Uniform Surface Roughness at Subcritical Reynolds Numbers” Applied Ocean Research, Vol. 49, pp. 20-26, 2015
[36] J. J. Miau, Y. H. Lai, Z. X. Tsai, X. Y. Hsu, Y. S. Ciou, “The Effect of Textile Roughness on the Critical Transition of Flow over a Circular Cylinder” In: 14th Asian
Symposium on Visualization, 2016
[37] J. Nikuradse, “Laws of Flow in Rough Pipes”, NACA Technical Memorandum 1292, 1937
[38] H. J. Allen, W. G. Vincenti, “Wall Interference in a Two-Dimensional-Flow Wind Tunnel, with Consideration of the Effect of Compressibility” TR 782, NACA, 1944
[39] ISO 25178-2:2012(en), Geometrical product specifications (GPS) - Surface texture: Areal — Part 2: Terms, definitions and surface texture parameters, 2012
[40] C. Tropea, A. L. Yarin, J. F. Foss, “Springer Handbook of Experimental Fluid Mechanics, Springer Science & Business Media.” 564-565, 2007
[41] M. Robinson, J. M. Schramm, K. Hannemann, “An Investigation into Internal and External Force Balance Configurations for Short Duration Wind Tunnels.” Numerical Fluid Mechanics and Multidisciplinary Design, Vol.96, pp.129-136, 2008
[42] M. A. M. A. Ferreira., “Design of a Six-Component External Wind Tunnel Balance.” Técnico lisboa, 2015
[43] M. L. C. C. Reis, O. A. F. Mello, S. Uyeno.” Calibration Uncertainty of an External Six-Component Wind Tunnel Balance.” In Proceedings of the 33rd AIAA Fluid
Dynamics Conference and Exhibit, AIAA-2003-3884, Orlando, Florida, pp.1-10, 2003
[44] S. E. Hatten., “Calibration Methods for an Aerolab 375 Sting Balance to be used in Wind Tunnel Testing.” 2013
[45] S. Y. F. Leung, & Y. Y. Link, “Comparison and Analysis of Strain Gauge Balance Calibration Matrix Mathematical Models,” 1999
[46] C. M. Harris, & A. G. Piersol, “Shock and Vibration Handbook” 5th edn, 2002
[47] Tech Note TN-505-4. “Strain Gauge Selection: Criteria, Procedures, Recommendations. Vishay Micro-Measurements”, USA, pp.46-64, 2007
[48] S-Beam Tension and Compression Load Cells, Models 151 and 152, Honeywell International Inc., 2016
[49] Choosing Load Cells for Tough Applications, Rice Lake Weighing Systems, 2009
[50] Model 160MK Bridgesensor, Calex, 2000
[51] P. A. Parker, M. Morton, N. Draper, W. Line, “A Single Vector Force Calibration Method Featuring the Modern Design of Experiments” 39th AIAA Aerospace Sciences meeting and Exhibition, No. 2001-170, AIAA, Reno, Nevada, pp.1-26, 2001
[52] I. Kechagioglou. "UNCERTAINTY AND CONFIDENCE IN MEASUREMENT" Πρακτικά 18ου Πανελληνίου Συνεδρίου Στατιστικής σελ, pp. 441-449, 2005
[53] ISO Guide 98-3: 2008(E). "Uncertainty of Measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM:1995)", 2008
[54] 段家瑞. "量測不確定度評估理論與實務" 財團法人工業技術研究院量測技術展中心, 2010
[55] G. D. Israel. "Determining Sample Sizes" PEOD6, 1992
[56] H. Schlichting, “Boundary Layer Theory”, 7th ed., McGraw Hill, New York, 1979
[57] E. Achenbach, “Influence of Surface Roughness on the Cross-Flow around a Circular Cylinder”, Journal of Fluid Mechanics, Vol. 46, pp. 321-335, 1971
[58] E. Szechenyi, “Supercitical Reynolds Number Simulation for Two-Dimensional Flow over Circular Cylinder”, Journal of Fluid Mechanics, Vol. 70, pp. 529-542, 1975
[59] F. Blateyron, “New 3D Parameters and Filtration Techniques for Surface Metrology”, Proc JSPE, pp. 21-27, 2006
[60] F. F. Farshad, T. C. Pesacreta, “Coated Pipe Interior Surface Roughness as Measured by Three Scanning Probe Instruments”, Anti-CorrosionMethods and Materials, Vol. 50, pp. 6-16, 2003
[61] T. Adams, C. Grant, H. Watson, “A Simple Algorithm to Relate Measured Surface Roughness to Equivalent Sand-Grain Roughness”, International Journal of Mechanical Engineering and Mechatronics, Vol. 1, pp. 66-71, 2012
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-24起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw