進階搜尋


下載電子全文  
系統識別號 U0026-0608201517350000
論文名稱(中文) 週期一動態半導體雷射之微波相位特性的模擬研究
論文名稱(英文) Numerical Study on Microwave Phase Characteristics of Semiconductor Lasers at Period-One Nonlinear Dynamics
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 103
學期 2
出版年 104
研究生(中文) 唐福君
研究生(英文) Fu-Chun Tang
學號 L76021074
學位類別 碩士
語文別 中文
論文頁數 64頁
口試委員 指導教授-黃勝廣
口試委員-魏明達
口試委員-曾碩彥
口試委員-徐旭政
中文關鍵字 微波光電子  半導體雷射  週期一動態  微波相位 
英文關鍵字 microwave photonics  semiconductor laser  period-one nonlinear dynamics  microwave phase 
學科別分類
中文摘要 本篇論文是利用光注入雷射半導體系統,在非線性動態中的週期一動態下,將主雷射經過外部調制器載上微波訊號後注入副雷射,以模擬方式分析不同注入條件下的微波相位。理論上,藉由固定注入強度,改變主副雷射頻率差的方法,只要副雷射能承受住注入強度的增加,主副雷射頻率差也能無上限提升,能將大於20 GHz的微波產生180度的相位變化。本篇論文中,在20~50 GHz的微波至少能產生160度的相位變化量,且調變相位時,微波強度的變化不到1 dB,而在20~40 GHz的微波能達到180度的相位變化量。
英文摘要 The microwave phase characteristics of a semiconductor laser subject to optical injection are numerically investigated at period-one nonlinear dynamics. An approximately linear phase shift of 180° can be achieved in the frequency range from 20 to 40 GHz. The variation of the microwave power is less than 2 dB during the shift of the microwave phase.
論文目次 Abstract......................................................I
摘要........................................................VIII
誌謝..........................................................IX
目錄...........................................................X
圖目錄.......................................................XII
第一章 前言...................................................1
1.1研究背景....................................................1
1.2論文架構...................................................14
第二章 光注入半導體雷射系統....................................15
2.1原理與理論模型.............................................15
2.2靜態分析模型...............................................18
2.3非線性動態簡介.............................................20
2.4動態分析模型...............................................29
第三章 週期一動態之微波相位特性.................................31
3.1微波相位之模擬概念..........................................31
3.2 fm=f0的注入分析...........................................37
3.3 fm≠f0的注入分析...........................................40
3.3.1注入強度與主副頻率差對微波相位影響.........................40
3.3.2 SCR對微波相位影響.......................................45
3.3.3調制強度對微波相位影響....................................51
3.3.4微波強度與調制頻寬........................................54
第四章 結論與展望..............................................57
參考文獻......................................................59
參考文獻 [1]J. Capmany and D. Novak, "Microwave photonics combines two worlds," Nature Photonics, vol. 1, pp. 319-330, Jun 2007.
[2]L. C. Godara, "Applications of antenna arrays to mobile communications. I. Performance improvement, feasibility, and system considerations," Proceedings of the IEEE, vol. 85, pp. 1031-1060, 1997.
[3]J. Howard, "Phased-Array Antennas Aid Wireless Communications," MICROWAVES & RF, vol. 52, pp. 60-+, 2013.
[4]J. Yao, "Microwave photonics," Lightwave Technology, Journal of, vol. 27, pp. 314-335, 2009.
[5]A. J. Fenn, D. H. Temme, W. P. Delaney, and W. E. Courtney, "The development of phased-array radar technology," Lincoln Laboratory Journal, vol. 12, pp. 321-340, 2000.
[6]S. Bellofiore, J. Foutz, C. A. Balanis, and A. S. Spanias, "Smart-antenna system for mobile communication networks. part 2. beamforming and network throughput," Antennas and propagation magazine, IEEE, vol. 44, pp. 106-114, 2002.
[7]S. Das, "Smart antenna design for wireless communication using adaptive beam-forming approach," in TENCON 2008-2008 IEEE Region 10 Conference, 2008, pp. 1-5.
[8]K. Minoguchi, Y. Nishikawa, M. Oishi, S. Akiba, J. Hirokawa, and M. Ando, Beam steering scheme of photonic array-antennas for 60 GHz RF signals generated by optical two-tone technique, 2014.
[9]Y. Nishikawa, M. Oishi, S. Akiba, J. Hirokawa, and M. Ando, "Photonic Array-Antenna in Millimeter-Wave Band by Wavelength Division Multiplexed Radio over Fiber," in OptoElectronics and Communications Conference and Photonics in Switching, 2013, p. ThP3_3.
[10]D. J. Love, R. W. Heath, and T. Strohmer, "Grassmannian beamforming for multiple-input multiple-output wireless systems," Information Theory, IEEE Transactions on, vol. 49, pp. 2735-2747, 2003.
[11]Y. Yongjun and C. Fushen, "A novel photonic RF phase shifter based on dual-drive Mach-Zehnder modulator," in Communications, Circuits and Systems, 2005. Proceedings. 2005 International Conference on, 2005, pp. 565-567.
[12]L. A. Bui, A. Michell, and T.-H. Chio, "Demonstration of a wide band RF photonic transversal phase-shifter," in Optical Fiber Communication Conference, 2004, p. FE6.
[13]Y. Dong, H. He, W. Hu, Z. Li, Q. Wang, W. Kuang, et al., "Photonic microwave phase shifter/modulator based on a nonlinear optical loop mirror incorporating a Mach-Zehnder interferometer," Optics letters, vol. 32, pp. 745-747, 2007.
[14]S. Pan and Y. Zhang, "Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer," Optics letters, vol. 37, pp. 4483-4485, 2012.
[15]W. Xue, F. Öhman, S. Blaaberg, Y. Chen, S. Sales, and J. Mørk, "Broadband microwave photonic phase shifter based on polarisation rotation," Electronics Letters, vol. 44, pp. 684-685, 2008.
[16]W. Liu, W. Li, and J. Yao, "An ultra-wideband microwave photonic phase shifter with a full 360 phase tunable range," Photonics Technology Letters, IEEE, vol. 25, pp. 1107-1110, 2013.
[17]H. Jiang, L. Yan, Z. Chen, J. Ye, A. Yi, W. Pan, et al., "Microwave Photonic Phase Shifter Using a Phase Modulator and a Fiber Bragg Grating in a Round-trip," in CLEO: Science and Innovations, 2013, p. CTu3G. 6.
[18]P.-C. Peng, F.-M. Wu, W. Jiang Jr, R.-L. Lan, C.-T. Lin, J. J. Chen, et al., "RF phase shifter using a distributed feedback laser in microwave transport systems," Optics express, vol. 17, pp. 7609-7614, 2009.
[19]S.-S. Lee, A. H. Udupa, H. Erlig, H. Zhang, Y. Chang, C. Zhang, et al., "Demonstration of a photonically controlled RF phase shifter," Microwave and Guided Wave Letters, IEEE, vol. 9, pp. 357-359, 1999.
[20]M. Burla, L. Romero Cortés, M. Li, X. Wang, L. Chrostowski, and J. Azaña, "On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit," Optics letters, vol. 39, pp. 6181-6184, 2014.
[21]F. Öhman, K. Yvind, and J. Mørk, "Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics," IEEE Photonics Technology Letters, vol. 19, pp. 1145-1147, 2007.
[22]W. Xue, S. Sales, J. Capmany, and J. Mørk, "Wideband 360 microwave photonic phase shifter based on slow light in semiconductor optical amplifiers," Optics express, vol. 18, pp. 6156-6163, 2010.
[23]J. Sancho, J. Lloret, I. Gasulla, S. Sales, and J. Capmany, "Fully tunable 360 microwave photonic phase shifter based on a single semiconductor optical amplifier," Optics express, vol. 19, pp. 17421-17426, 2011.
[24]A. Loayssa and F. J. Lahoz, "Broad-band RF photonic phase shifter based on stimulated Brillouin scattering and single-sideband modulation," Photonics Technology Letters, IEEE, vol. 18, pp. 208-210, 2006.
[25]S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, et al., "Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers," Optics express, vol. 18, pp. 22599-22613, 2010.
[26]W. Xue, S. Sales, J. Capmany, and J. Mørk, "Experimental demonstration of 360 o tunable RF phase shift using slow and fast light effects," in Slow and Fast Light, 2009, p. SMB6.
[27]S. Sales, W. Xue, J. Mork, and I. Gasulla, "Slow and fast light effects and their applications to microwave photonics using semiconductor optical amplifiers," Microwave Theory and Techniques, IEEE Transactions on, vol. 58, pp. 3022-3038, 2010.
[28]J. Capmany, I. Gasulla, and S. Sales, "Microwave photonics: Harnessing slow light," Nature Photonics, vol. 5, pp. 731-733, 2011.
[29]A. S. BE and M. Teich, "Fundamentals of photonics," ed: New York: Wiley-Interscience, 1991.
[30]A. Loayssa, D. Benito, and M. J. Garde, "Applications of optical carrier Brillouin processing to microwave photonics," Optical Fiber Technology, vol. 8, pp. 24-42, 2002.
[31]S.-C. Chan, S.-K. Hwang, and J.-M. Liu, "Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser," Optics express, vol. 15, pp. 14921-14935, 2007.
[32]S.-K. Hwang, J.-M. Liu, and J. K. White, "Characteristics of period-one oscillations in semiconductor lasers subject to optical injection," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 10, pp. 974-981, 2004.
[33]Y.-H. Hung and S.-K. Hwang, "Photonic microwave amplification for radio-over-fiber links using period-one nonlinear dynamics of semiconductor lasers," Optics letters, vol. 38, pp. 3355-3358, 2013.
[34]T. Simpson, J. Liu, K. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, vol. 9, p. 765, 1997.
[35]J.-M. Liu, H.-F. Chen, and S. Tang, "Dynamics and synchronization of semiconductor lasers for chaotic optical communications," in Digital Communications Using Chaos and Nonlinear Dynamics, ed: Springer, 2006, pp. 285-340.
[36]T. Simpson, "Mapping the nonlinear dynamics of a distributed feedback semiconductor laser subject to external optical injection," Optics Communications, vol. 215, pp. 135-151, 2003.
[37]T. Simpson, J.-M. Liu, A. Gavrielides, V. Kovanis, and P. Alsing, "Period‐doubling route to chaos in a semiconductor laser subject to optical injection," Applied Physics Letters, vol. 64, pp. 3539-3541, 1994.
[38]T. Simpson, J.-M. Liu, A. Gavrielides, V. Kovanis, and P. Alsing, "Period-doubling cascades and chaos in a semiconductor laser with optical injection," Physical review A, vol. 51, p. 4181, 1995.
[39]T. Simpson and J. Liu, "Enhanced modulation bandwidth in injection-locked semiconductor lasers," Photonics Technology Letters, IEEE, vol. 9, pp. 1322-1324, 1997.
[40]S. Hwang, J. Liu, and J. White, "35-GHz intrinsic bandwidth for direct modulation in 1.3-μm semiconductor lasers subject to strong injection locking," Photonics Technology Letters, IEEE, vol. 16, pp. 972-974, 2004.
[41]G. Yabre and J. Le Bihan, "Reduction of nonlinear distortion in directly modulated semiconductor lasers by coherent light injection," Quantum Electronics, IEEE Journal of, vol. 33, pp. 1132-1140, 1997.
[42]J. Liu, H. Chen, X. Meng, and T. Simpson, "Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking," Photonics Technology Letters, IEEE, vol. 9, pp. 1325-1327, 1997.
[43]Y. Okajima, S. Hwang, and J. Liu, "Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection," Optics communications, vol. 219, pp. 357-364, 2003.
[44]S.-K. Hwang, H.-F. Chen, and C.-Y. Lin, "All-optical frequency conversion using nonlinear dynamics of semiconductor lasers," Optics letters, vol. 34, pp. 812-814, 2009.
[45]S.-C. Chan, S.-K. Hwang, and J.-M. Liu, "Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser," Optics letters, vol. 31, pp. 2254-2256, 2006.
[46]Y.-H. Hung, C.-H. Chu, and S.-K. Hwang, "Optical double-sideband modulation to single-sideband modulation conversion using period-one nonlinear dynamics of semiconductor lasers for radio-over-fiber links," Optics letters, vol. 38, pp. 1482-1484, 2013.
[47]J.-M. Liu and T. Simpson, "Four-wave mixing and optical modulation in a semiconductor laser," Quantum Electronics, IEEE Journal of, vol. 30, pp. 957-965, 1994.
[48]J.-m. Liu, H.-F. Chen, and S. Tang, "Synchronized chaotic optical communications at high bit rates," Quantum Electronics, IEEE Journal of, vol. 38, pp. 1184-1196, 2002.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw