進階搜尋


下載電子全文  
系統識別號 U0026-0608201511173000
論文名稱(中文) 雙感測層有機薄膜電晶體應用於酒精氣體感測器之研究
論文名稱(英文) Double Sensing Layer of Organic Thin-Film Transistors-based Ethanol Gas Sensor
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 103
學期 2
出版年 104
研究生(中文) 周平
研究生(英文) Ping Chou
學號 q16024228
學位類別 碩士
語文別 中文
論文頁數 79頁
口試委員 指導教授-李清庭
口試委員-李欣縈
口試委員-劉代山
口試委員-林祐仲
中文關鍵字 有機薄膜電晶體  有機薄膜電晶體氣體感測器  五苯環  料酞菁铜(II)(β-型)  酒精氣體感測器 
英文關鍵字 Organic Thin-Film Transistors  Organic Thin-Film Transistors as gas sensor  Pentacene  CuPc  ethanol gas sensor 
學科別分類
中文摘要 本研究利用加入CuPc緩衝感測層於有機薄膜電晶體元件,藉此提高元件對酒精氣體的響應度及穩定性。由於感測層的特性對氣體感測器而言,為最重要的影響因素,因此本研究藉由改變不同通道層鍍率和加入不同厚度的CuPc緩衝層於感測器中,一方面提升元件特性;另一方面藉由CuPc本身亦對酒精氣體具良好的反應能力來當作雙感測層的應用,藉此提高元件對酒精氣體之響應度。由實驗結果可知,在通道層Pentacene厚度50 nm且鍍率為1.5 Å/s和緩衝層CuPc厚度為5 nm時,其場效載子移動率可到達為2.283×10-1 cm2/Vs,同時在100 ppm的酒精氣體濃度下,其響應度能達到70%。此結果相較於未加入緩衝層CuPc時,其場效載子移動率為6.74×10-2 cm2/Vs,在100 ppm酒精濃度下其響應度35%等結果有明顯提升,元件對酒精氣體響應度和特性表現更佳。
英文摘要 The goal of this research is to enhance the sensitivity and stability of the OTFT ethanol gas sensor by adding a CuPc buffer-sensing layer. Because the sensing layer is the most important part of the gas sensor, this research modulated the thickness of CuPc layer and changed different evaporation rate of the Pantacene active layer of the ethanol gas sensor device to improve the performance. Moreover, the CuPc buffer layer, which possessed well sensitivity for ethanol, can effectively enhance the sensing response of the gas sensor. According to the experimental results, when the thickness of pentacene active layer was 50 nm with evaporation rate of 1.5 Å/s and CuPc buffer layer was 5 nm, the optimized characteristic can be obtained. The mobility and gas response of the OTFT gas sensor with 5-nm-thick CuPc buffer layer its mobility achieved 2.283×10-1 cm2/Vs and 70% under 100 ppm ethanol. The results were much better than the one without CuPc buffer layer which possessed the mobility and gas response of 6.74×10-2 cm2/Vs and 35% under 100 ppm ethanol, respectively.
論文目次 摘要……………………………………………………………………………I
Abstract………………………………………………………………………III
致謝…………………………………………………………………………IX
目錄…………………………………………………………………………X
表目錄……………………………………………………………………XIII
圖目錄……………………………………………………………………XIV


第一章 緒論 1
1.1 有機半導體簡介 1
1.2氣體感測器簡介 2
1.3研究動機 3
第二章 基本理論與文獻回顧 6
2.1 有機薄膜電晶體 6
2.1.1 有機薄膜電晶體之基本工作原理 7
2.1.2 有機薄膜電晶體之重要參數 9
2.2 有機半導體的載子傳輸機制 11
2.3 有機半導體緩衝層之概論 12
2.4氣體感測器 13
2.4.1 常見的氣體感測器與應用 13
2.4.2 金屬氧化物型氣體感測器 14
2.4.3 金屬酞花青型氣體感測器 15
2.4.4導電高分子型感測器 15
2.4.5有機薄膜電晶體感測器 16
第三章 實驗方法與步驟 25
3.1 實驗架構 25
3.2 實驗材料 25
3.2.1 Pentacene (五苯環) 26
3.2.2 PMMA (聚甲基丙烯酸甲酯) 26
3.2.3 CuPc(料酞菁铜(II)(β-型)) 27
3.2.4金屬電極材料 28
3.3 元件製程步驟 28
3.3.1元件基板清潔 28
3.3.2元件電極之定義 29
3.3.3元件介電層之定義 29
3.3.4元件通道層之定義 30
3.3.5元件緩衝層之定義 30
3.3.6感測器元件之量測 31
第四章 結果與討論 35
4.1 不同緩衝層(CuPc)厚度之元件電特性 35
4.2不同緩衝層(CuPc)厚度元件對酒精之氣體響應度 37
4.3不同通道層鍍率對元件電性上的影響 38
4.4不同通道層鍍率對元件在酒精氣體響應度上之影響 41
4.5 XRD 晶相分析 45
4.6 感測器元件對氣體之選擇性 46
第五章 結論 72
5.1 結論 72
參考文獻 74
參考文獻 [1]C. K. Chiang, C. R. Fincher Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene”, Phys. Rev. Lett., vol. 40, pp. 1098-1101, 1977.

[2] S. P. Li, D. P. Chu, C. J. Newsome, D. M. Russell, T. Kugler, M. Ishida, and T. Shimoda, “Short-channel polymer field-effect-transistor fabrication using spin-coating-induced edge template and ink-jet priting”, Appl. Phys. Lett., vol. 87, pp. 232111-232111-3, 2005.

[3] V. M. Silva, and L. Pereira, “The nature of the electrical conduction and light emitting efficiency in organic semiconductors layers: The case of [m-MTDATA] – [NPB] – Alq3 OLED”, J Non-crystal solids, vol. 352, pp. 5429-5436, 2006.

[4] C. D. Dimitrakopoulos and P. R. L. Malenfant, “Organic thin film transistors for large area electronics”, Adv. Mater., vol. 14, pp. 99-117, 2002.

[5] L. Torsi, N. Cioffi, C. Di Franco, L. Sabbatini, P. G. Zambonin, and T. Bleve-Zacheo, “Organic thin film transistor: from active materials to novel applications”, Sol. St. Elec., vol. 45, pp. 1479-1485, 2001.

[6] B. Liu, G. Z. Xie, X. S. Du, X. Li, and P. Sun, “Pentacene based organic thin-film transistor as gas sensor”, International Conference on ICACIA, 2009.

[7] X. Li, Y. D. Jiang, G. Z. Xie, X. S. Du, H. L. Tai, J. F. Yan, and S. Qifu, “ Ethanol gas sensor based on copper phthalocyanine thin-film transistors”, International Conference on ICACIA, 2010.

[8] R. Wisnieff, “Printing Screens”, Nature, vol. 394, pp. 225, 1998.

[9] J. H. Schon, C. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors”, Org. Electronics, vol. 1, pp. 57-64, 2000.

[10] S. M. Sze, “Physics of semiconductor device”, Wiley (1981).

[11] R. M. Glaeser and R. S. Berry, “Mobilities of electrons and holes in organic molecular solids comparison of band and hopping models”, J. Chem. Phys., vol. 44, pp. 3797-3810, 1966.

[12] N. B. Zhitenev, H. Meng, and Z. Bao, “Conductance of small molecular junctions”, Phys. Rev. Lett., vol. 88, pp. 226801-226801-3, 2002.

[13] J. Cornil, J. Ph. Calbert, and J. L. Brédas, “Electronic structure of the pentacene single crystal: relation to transport properties”, J. Am. Chem. Soc., vol. 123, pp. 1250-1250-3, 2001.

[14] S. Verlaak, V. Arkhipov, and P. Heremans, “Modeling of transport in polycrystalline organic semiconductor films”, Appl. Phys. Lett., vol. 82, pp. 745-747, 2003.

[15] N. J. Watkins, L. Yan, and Y. Gao, “Electronic structure symmetry of interfaces between pentacene and metals”, Appl. Phys. Lett., vol. 80, pp. 4384-4386, 2002.

[16] F. Amy, C. Chan, and A. Kahn, “Polarization at the gold/pentacene interface”, Org. Chem., vol. 6, pp. 85-91, 2005.

[17] P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, “Contact resistance extraction in pentacene thin film transistors”, Sol. St. Elec., vol. 47, pp. 559-262, 2003.

[18] H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A.Nichols, and T. N. Jackson, “Contact resistance in organic thin film transistors”, Sol. St. Elec., vol.47, pp. 297-310, 2003.

[19] R. Hajlaoui, G. Horowitz, F. Garnier, A. A. Arce-Brouchet, L. Laigre, A. E. Kassmi, F. Demanze, and F. Kouki, “Improved field-effect mobility in short oligothiophenes: Quaterthiophene and quinquethiophene, Adv. Mater., vol. 9, no. 5, pp. 389-391, 1997.

[20] S. Y. Park, Y. H. Noh, and H. H. Lee, “Introduction of an interlayer between metal and semiconductor for organic thin-film transistors”, Appl. Phys. Lett., vol. 88, pp. 113503-113503-3, 2006.

[21] H. Mu, D. Klotzkin, A. de Silva, H. P. Wagner, D. White, and B. Sharpton, “Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq3 in OLED”, J. Phys. D: Appl. Phys., vol. 41, no. 23, pp. 235109-235109-5, 2008.

[22] M. Zadsar, H. R. Fallah, M. H. Mahmoodzadeh, and S. V. Tabatabaei, “The effect of Ag layer thickness on the properties of WO3/Ag/MoO3 multilayer films as anode in organic light emitting diodes”, J. lumen., vol. 132, pp. 992-997, 2012.

[23] L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode”, Appl. Phys. Lett., vol. 70 , pp. 152-154, 1997.

[24] Y. Divayanaa , B.J. Chena , X.W. Suna,, T.K.S. Wonga , K.R. Sarmab, and X. Huc, “Hole injection or blocking? The role of CuPc in Alq3-based organic light-emitting devices”, J. Cryst. Growth, vol. 288, pp. 105-109, 2006.

[25] F.C. Chen, L.J. Kung, T.H. Chen, and Y.S. Lin “Copper phthalocyanine buffer layer to enhance the charge injection in organic thin-film transistors”, Appl. Phys. Lett., vol. 90, pp. 073504-073504-3, 2007

[26] Y. Li, Q. Liu, J.Cai, Y. Li, Y.Shi, X. Wang, and Z. Hu,“Remarkable reduction in the threshold voltage of pentacene-based thin film transistors with pentacene/CuPc sandwich configuration”, AIP Adanvances, vol. 4, pp. 067126-067126-6, 2014.

[27] H. Gui, B. Wei, and J. Wang, “High sensitivity and air stability in an organic transistor-based biosensor by inserting a CuPc layer”, Phys. Status Solidi, A. 211, no. 11, pp. 2499–2502, 2014.

[28] I. Masamichi and S. Hirokazu, “Sensing mechanism of SnO2 gas sensors”, J. Mater. Sci., vol. 25, pp. 259-352, 1990.

[29] A. Mohammadi, M. A. Hasan, B. Liedberg, I. Lundstrom, and W. R. Salanek, “Chemical vapour deposition (CVD) of conducting polymers: polypyrrole”, Synth. Met., vol. 14, pp. 189-197, 1986.

[30] G. B. Dan, “Electroduction conjugated polymers new sensitive matrices to build up chemical or electrochemical sensors a review”, Sens. Actuator B-Chem., vol. 6, pp. 45-56, 1992.

[31] N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, “Interactions of tin oxide surface with O2, H2O and H2”, Surf. Sci., vol. 86, pp. 335-339, 1979.

[32] S. Mukhopadhyay, C. A. Hogarth, S. C. Thorpe, and M. J. Cook, “Materials in electronics”, J. Mater. Sci., vol. 5, pp. 312-323, 1994.

[33] H. Y. Wang, W. H. Ko, D. A. Batzel, M. E. Kenney, and J. B. Lando, “Phthalocyanine langmuir-blodgett film microsensors for Halogen Gases” , Sens. Actuator B-Chem., vol. 1, pp. 138-141, 1990.

[34] J. P. Blasquez, J. P. Germain, A. Larbi, C. Maleysson, and H. Robert, “Study of the action of gases on a polypyrrole film”, Sens. Actuator B-Chem., vol. 1, pp. 130-133, 1988.

[35] B. Bott and T. A. Jones, “Gas-induced electrical conductivity changes in metal phthalocyanines”, Sens. Actuator B-Chem., vol. 9, pp. 27-37, 1986.

[36] Y. Sadaoka, T. A. Jones, G. S. Revell, and W. Gopel, “Effects of morphology on NO detection in air at room temperature with phtalocyanine 2 thin films”, J. Mater. Sci., vol. 25, pp. 5257–5268, 1990.
.
[37] H. Hagase, K. Wakabayashi, and T. Imanaka, “Effect of doping anion in polypyrrole gas sensors”, Sens. Actuator B-Chem., vol. 13, pp. 596-597, 1993.

[38] T. Hanawa and H. Yoneyama, “Bull gas sensitivities of polypyrrole film to electron acceptor gases”, Chem. Soc. Jpn, vol. 62, pp. 1710-1714, 1989.

[39] G. Nagasubramanian, S.D. Stefano, and J. Moacanin, “ Electrochemical incorporation of poly(pyrrole) into nafion and comparison of the electrochemical properties of nationpoly(pyrrole) and poly(pyrrole) films”, J. Phys. Chem., vol. 90 , pp. 4447-4450, 1986.

[40] O. Niwa, M. Kakuchi, and T. Tamamura, “Polypyrrole-based conducting polymer alloy films: physical properties and film morphology”, Macromolecules, vol. 20, pp. 749-753 ,1987.

[41] F. Selampinar, U. Akbulut, T. Yacin, S. Suzer, and L. Toppare, “A conducting composite of polypyrrole II as a gas sensor ”, Synth. Met., vol. 68, pp. 109-116, 1995.

[42] L. Torsi, A. Dodabalapur, L. Sabbatini, and P. G. Zambonin, “Multi-parameter gas sensors based on organic thin-film-transistors”, Sens. Actuator B-Chem., vol. 67, pp. 312-316, 2000.

[43] B. Crone, A. Dodabalapur, and A. Gelperin, “Electronic sensing of vapors with organic transistors”, Appl. Phys. Lett., vol. 78, pp. 2229-2231, 2001.

[44] J. Chang, “Functionalized polythiophene thin-film transistors for low-cost gas sensor arrays”, Technical Report of EECS, 2006.

[45] L. Torsi, A. J. Lovinger, and B. Crone, “Correlation between oligothiophene thin film transistor mophology and vapor response”, J Phys Chem B., vol. 106, pp. 12563-12568, 2002.

[46] T. S. Huang, Y. K. Suand, and P. C. Wang, “Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer”, Appl. Phys. Lett., vol. 91, pp. 092116- 092116 -3, 2007.


[47] W. Wang, J. Shi, W. Jiang, S. Guo, H. Zhang, B. Quan, and D. Ma, “High-mobility pentacene thin-film transistors with copolymer-gate dielectric”, Microelectron. J., vol. 38, pp. 27-30, 2007.

[48] J. C. Bernède, F. Martinez, G. Neculqueo, and L. Cattin, “On the improvement of the electroluminescent signal of organic light emitting diodes by the presence of an ultra-thin metal layer at the interface organic/ITO” , phys. stat. sol. (RRL), vol. 2, no. 1, pp. 10–12, 2008.

[49] N. J. Watkins, Li. Yan, Y. Gao, and C. W. Tang, “Evidence of electron and hole transfer in metal/CuPc interfaces”, P. Soc. Photo-opt. Ins., vol. 248, 2003.

[50] H. G. Kim, J. S. Jang, S. T. Hur, S. W. Choi, S. S. Kim, H. Tada, H. Takezoe, and K. Ishikawa, “Thin-film field-effect transistors of copper phthalocyanine on a rubbed polyethersulfone”, Thin Solid Films, vol. 519, pp. 2011-2014, 2011.

[51] D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, “Pentacene organic thin-film transistors—molecular ordering and mobility”, IEEE Electron Dev. Lett., vol. 18, no. 3, pp. 87-89, 1997.

[52] M. H. Choo, J. H. Kim, and S. Im, “Hole transport in amorphous -crystalline-mixed and amorphous pentacene thin-film transistors”, Appl. Phys. Lett., vol. 81, pp. 4640-4643, 2002.

[53] J. H. Park, C. H. Kang, Y. J. Kim, Y. S. Lee, and J. S. Choi, “Characteristics of pentacene-based thin-film transistors”, Mater. Sci. Eng.C, vol. 24, pp. 27-29, 2004.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-21起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-21起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw