進階搜尋


下載電子全文  
系統識別號 U0026-0608201416541500
論文名稱(中文) 視覺增益對施力變異性及運動單元活化模式的影響
論文名稱(英文) The Effects of Visual Gain on Force Variability and Motor Unit Discharge Pattern
校院名稱 成功大學
系所名稱(中) 物理治療學系
系所名稱(英) Department of Physical Therapy
學年度 102
學期 2
出版年 103
研究生(中文) 史佳立
研究生(英文) Chia-Li Shih
學號 T66014056
學位類別 碩士
語文別 英文
論文頁數 39頁
口試委員 指導教授-黃英修
口試委員-成戎珠
口試委員-林宙晴
口試委員-張國清
中文關鍵字 視覺增益  運動單元  施力變異性  視覺動作控制 
英文關鍵字 visual gain  motor unit  force variability  visuomotor control 
學科別分類
中文摘要 研究目的:透過電腦螢幕進行視覺-徒手技巧訓練已日漸流行。視覺增益決定了電腦螢幕上的空間視覺資訊量,對於指引手部動作具重要的功能性。過去文獻顯示施力穩定度和施力變異性的複雜度會隨著視覺增益改變而有所差異,然而其神經生理機制仍然不清楚。本研究的目的在探討視覺增益對運動單元活化的影響以及其對施力變異性改變的關係。

研究方法:15位無任何神經疾病史之健康成人(年齡:25.80 ± 3.76歲)參與本實驗。全部參與者須在低視覺增益情況(4.8像素/%最大用力收縮)與高視覺增益情況(48像素/%最大用力收縮)下,藉由食指外展推動荷重元來吻合電腦螢幕上10%最大等長用力收縮之目標力量。多頻道表面肌電圖電極置於第一背側骨間肌上,以數學模式解離多頻道表面肌電圖並分析運動單元活化模式。以配對t檢定來比較低和高視覺增益情況之施力變異性特性(大小、複雜度及平均頻率)和運動單元活化模式(平均觸發間期、觸發間期複雜度、平均觸發間期及觸發間期複雜度之變異係數;平均活化頻率、活化頻率複雜度、平均活化頻率及活化頻率複雜度之變異係數)的差異。以皮爾森相關係數分析施力變異性特性和運動單元活化模式之關係。

研究結果:相較於低視覺增益情況,高視覺增益導致較小的施力變異性且增加施力變異性的複雜度。平均觸發間期/活化頻率和觸發間期/活化頻率複雜度在兩種情況下皆無明顯差異。各運動單元間的平均觸發間期/活化頻率以及觸發間期/活化頻率複雜度之變異係數在高視覺增益情況比低視覺增益情況更大。皮爾森相關分析顯示:在低視覺增益情況,只有施力變異性大小與運動單元活化模式有明顯相關,而施力複雜度與平均頻率皆無相關。然而,在高視覺增益情況,施力變異性特性與運動單元活化模式沒有顯著相關。

結論:高視覺增益藉由增加運動單元間活化模式的變異性,以更複雜的施力修正行為改善施力穩定度。由運動單元活化的觀點,本研究部份解釋了高視覺增益產生的足夠空間視覺資訊有利於在電腦螢幕上訓練視覺動作任務。
英文摘要 Objective: It is increasingly prevalent to train visuo-manual skills with a computer monitor. It is functionally important to guide a manual action with sufficient visual gain that determines the amount of spatial visual information on computer monitor. Previous studies have shown that force steadiness and complexity of force variability vary jointly with visual gain, despite that underlying neurophysiological mechanism is still unclear. The purpose of this study was to investigate the effect of visual gain on motor unit (MU) discharge that could link to force variability characteristics.

Methods: Fifteen healthy adults (age: 25.80 ± 3.76 years) without any history of neurological disease were recruited in this study. All participants were instructed to match a target force at 10% maximal voluntary contraction (MVC) on a computer screen under low visual gain (4.8 pixels/%MVC) and high visual gain condition (48 pixels/%MVC). Multi-electrode surface EMG was applied on the first dorsal interosseus muscle to characterize MU discharge pattern following decomposition procedure. Paired-t test was used to compare force variability characteristics (the size, complexity, and mean frequency) and MU discharge patterns (mean inter-spike interval (ISI), ISI complexity, coefficients of variance (CVs) of mean ISI/ISI complexity; mean discharge rate (DR), DR complexity, CVs of mean DR/DR complexity) between low and high visual gain conditions. In addition, Pearson’s correlation analysis was used to determine the correlation between force variability characteristics and MU discharge patterns.

Results: High visual gain led to a smaller size of force variability and an enhanced complexity of force variability than low visual gain. Mean ISI/DR and ISI/DR complexity were not significantly different between the two visual conditions. CVs of mean ISI/DR and ISI/DR complexity among motor units were greater in the high visual gain condition than those in the low visual gain condition. Pearson’s correlation analysis revealed that only the size of force variability was significantly correlated with MU discharge pattern in low visual gain condition, but the complexity and mean frequency of force were not. However, there were no significant correlation between the force variability characteristics and MU discharge patterns in high visual gain condition.

Conclusions: High visual gain for an isometric force task could reduce force steadiness with richer corrective actions, underlying enhanced variations in inter-motor unit discharge pattern. The present studies partly explain the reason why sufficient spatial visual information due to higher visual gain is advantageous to train a visuomotor task on a computer screen.
論文目次 摘要...I
Abstract...III
致謝...V
Contents...VI
List of Tables...VIII
List of Figures...IX

Chapter 1. Introduction...1
1.1 Literature review...1
1.1.1 Application of visual gain in various fields of
research...1
1.1.2 Visual gain effect in force tracking research...2
1.2 Motivation, Research Purposes, and Hypothesis...4

Chapter 2. Methods...6
2.1 Subjects...6
2.2 Experimental setup...6
2.3 Procedures...7
2.4 Data analysis...8
2.5 Statistical analysis...10

Chapter 3. Results...12
3.1 Force variability characteristics...12
3.2 MU discharge pattern...12
3.3 Functional coupling between force variability
characteristics and MU discharge patterns...13

Chapter 4. Discussion...15
4.1 Force variability characteristics...15
4.2 MU discharge patterns...16
4.3 Functional coupling between force variability
characteristics and MU discharge patterns...17
4.4 Methodological considerations...18

Chapter 5. Conclusion...21
Reference...22
參考文獻 Bagce, H. F., Saleh, S., Adamovich, S. V., & Tunik, E. (2011). Visuomotor discordance in virtual reality: effects on online motor control. Conf Proc IEEE Eng Med Biol Soc, 2011, 7262-7265. doi: 10.1109/iembs.2011.6091835
Bagce, H. F., Saleh, S., Adamovich, S. V., & Tunik, E. (2012). Visuomotor gain distortion alters online motor performance and enhances primary motor cortex excitability in patients with stroke. Neuromodulation, 15(4), 361-366. doi: 10.1111/j.1525-1403.2012.00467.x
Baudry, S., & Duchateau, J. (2012). Age-related influence of vision and proprioception on Ia presynaptic inhibition in soleus muscle during upright stance. J Physiol, 590(Pt 21), 5541-5554. doi: 10.1113/jphysiol.2012.228932
Baweja, H. S., Kennedy, D. M., Vu, J., Vaillancourt, D. E., & Christou, E. A. (2010). Greater amount of visual feedback decreases force variability by reducing force oscillations from 0-1 and 3-7 Hz. Eur J Appl Physiol, 108(5), 935-943. doi: 10.1007/s00421-009-1301-5
Baweja, H. S., Kwon, M., & Christou, E. A. (2012). Magnified visual feedback exacerbates positional variability in older adults due to altered modulation of the primary agonist muscle. Exp Brain Res, 222(4), 355-364. doi: 10.1007/s00221-012-3219-0
Baweja, H. S., Patel, B. K., Martinkewiz, J. D., Vu, J., & Christou, E. A. (2009). Removal of visual feedback alters muscle activity and reduces force variability during constant isometric contractions. Exp Brain Res, 197(1), 35-47. doi: 10.1007/s00221-009-1883-5
Chen, Y. C., Lin, Y. T., Huang, C. T., Shih, C. L., Yang, Z. R., & Hwang, I. S. (2013). Trajectory adjustments underlying task-specific intermittent force behaviors and muscular rhythms. PLoS One, 8(9), e74273. doi: 10.1371/journal.pone.0074273
Coombes, S. A., Corcos, D. M., Sprute, L., & Vaillancourt, D. E. (2010). Selective regions of the visuomotor system are related to gain-induced changes in force error. J Neurophysiol, 103(4), 2114-2123. doi: 10.1152/jn.00920.2009
Costa, M., Goldberger, A. L., & Peng, C. K. (2002). Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett, 89(6), 068102.
De Luca, C. J. , & Nawab, S. H. (2011). Reply to Farina and Enoka: The Reconstruct-and-Test Approach Is the Most Appropriate Validation for Surface EMG Signal Decomposition to Date. J Neurophysiol, 105, 983-984.
De Luca, C. J., Adam, A., Wotiz, R., Gilmore, L. D., & Nawab, S. H. (2006). Decomposition of surface EMG signals. J Neurophysiol, 96(3), 1646-1657. doi: 10.1152/jn.00009.2006
De Luca, C. J., & Forrest, W. J. (1973). Some properties of motor unit action potential trains recorded during constant force isometric contractions in man. Kybernetik, 12(3), 160-168.
De Luca, C. J., LeFever, R. S., McCue, M. P., & Xenakis, A. P. (1982). Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol, 329, 113-128.
Hong, S. L., & Newell, K. M. (2008). Motor entropy in response to task demands and environmental information. Chaos, 18(3), 033131. doi: 10.1063/1.2979695
Hu, X., & Newell, K. M. (2011). Visual information gain and task asymmetry interact in bimanual force coordination and control. Exp Brain Res, 212(4), 497-504. doi: 10.1007/s00221-011-2760-6
Hu, X., Rymer, W. Z., & Suresh, N. L. (2013). Assessment of validity of a high-yield surface electromyogram decomposition. J Neuroeng Rehabil, 10, 99. doi: 10.1186/1743-0003-10-99
Hu, X., Rymer, W. Z., & Suresh, N. L. (2014). Accuracy assessment of a surface electromyogram decomposition system in human first dorsal interosseus muscle. J Neural Eng, 11(2), 026007. doi: 10.1088/1741-2560/11/2/026007
Jordan, K., Jesunathadas, M., Sarchet, D. M., & Enoka, R. M. (2013). Long-range correlations in motor unit discharge times at low forces are modulated by visual gain and age. Exp Physiol, 98(2), 546-555. doi: 10.1113/expphysiol.2012.067975
Jordan, K., & Newell, K. M. (2004). Task goal and grip force dynamics. Exp Brain Res, 156(4), 451-457. doi: 10.1007/s00221-003-1806-9
Kennedy, D. M., & Christou, E. A. (2011). Greater amount of visual information exacerbates force control in older adults during constant isometric contractions. Exp Brain Res, 213(4), 351-361. doi: 10.1007/s00221-011-2777-x
Kuznetsov, N. A., & Riley, M. A. (2010). Spatial resolution of visual feedback affects variability and structure of isometric force. Neurosci Lett, 470(2), 121-125. doi: 10.1016/j.neulet.2009.12.068
Laine, C. M., Yavuz, S. U., & Farina, D. (2014). Task-related changes in sensorimotor integration influence the common synaptic input to motor neurones. Acta Physiol (Oxf), 211(1), 229-239. doi: 10.1111/apha.12255
Lee Hong, S., & Newell, K. M. (2008). Visual information gain and the regulation of constant force levels. Exp Brain Res, 189(1), 61-69. doi: 10.1007/s00221-008-1403-z
Lin, Y. T., Kuo, C. H., & Hwang, I. S. (2014). Fatigue effect on low-frequency force fluctuations and muscular oscillations during rhythmic isometric contraction. PLoS One, 9(1), e85578. doi: 10.1371/journal.pone.0085578
Nafati, G., Rossi-Durand, C., & Schmied, A. (2004). Proprioceptive control of human wrist extensor motor units during an attention-demanding task. Brain Res, 1018(2), 208-220. doi: 10.1016/j.brainres.2004.05.066
Nafati, G., Schmied, A., & Rossi-Durand, C. (2005). Changes in the inhibitory control exerted by the antagonist Ia afferents on human wrist extensor motor units during an attention-demanding motor task. J Neurophysiol, 93(4), 2350-2353. doi: 10.1152/jn.00996.2004
Nawab, S. H., Chang, S. S., & De Luca, C. J. (2009). Surface EMG signal decomposition using empirically sustainable biosignal separation principles. Conf Proc IEEE Eng Med Biol Soc, 2009, 4986-4989. doi: 10.1109/iembs.2009.5334090
Nawab, S. H., Chang, S. S., & De Luca, C. J. (2010). High-yield decomposition of surface EMG signals. Clin Neurophysiol, 121(10), 1602-1615. doi: 10.1016/j.clinph.2009.11.092
Pasalar, S., Roitman, A. V., & Ebner, T. J. (2005). Effects of speeds and force fields on submovements during circular manual tracking in humans. Exp Brain Res, 163(2), 214-225. doi: 10.1007/s00221-004-2169-6
Pincus, S. (1995). Approximate entropy (ApEn) as a complexity measure. Chaos, 5(1), 110-117. doi: 10.1063/1.166092
Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A, 88(6), 2297-2301.
Pincus, S. M. (2001). Assessing serial irregularity and its implications for health. Ann N Y Acad Sci, 954, 245-267.
Pinsault, N., & Vuillerme, N. (2008). The effects of scale display of visual feedback on postural control during quiet standing in healthy elderly subjects. Arch Phys Med Rehabil, 89(9), 1772-1774. doi: 10.1016/j.apmr.2008.02.024
Prager, A. D., & Contreras-Vidal, J. L. (2003). Adaptation to display rotation and display gain distortions during drawing. Hum Mov Sci, 22(2), 173-187.
Prodoehl, J., & Vaillancourt, D. E. (2010). Effects of visual gain on force control at the elbow and ankle. Exp Brain Res, 200(1), 67-79. doi: 10.1007/s00221-009-1966-3
Rougier, P., Farenc, I., & Berger, L. (2004). Modifying the gain of the visual feedback affects undisturbed upright stance control. Clin Biomech (Bristol, Avon), 19(8), 858-867. doi: 10.1016/j.clinbiomech.2004.04.013
Schmied, A., Pagni, S., Sturm, H., & Vedel, J. P. (2000). Selective enhancement of motoneurone short-term synchrony during an attention-demanding task. Exp Brain Res, 133(3), 377-390.
Seidler, R. D., Bloomberg, J. J., & Stelmach, G. E. (2001). Context-dependent arm pointing adaptation. Behav Brain Res, 119(2), 155-166.
Slifkin, A. B., Vaillancourt, D. E., & Newell, K. M. (2000). Intermittency in the control of continuous force production. J Neurophysiol, 84(4), 1708-1718.
Sosnoff, J. J., & Newell, K. M. (2006). Information processing limitations with aging in the visual scaling of isometric force. Exp Brain Res, 170(3), 423-432. doi: 10.1007/s00221-005-0225-5
Sosnoff, J. J., Valantine, A. D., & Newell, K. M. (2006). Independence between the amount and structure of variability at low force levels. Neurosci Lett, 392(3), 165-169. doi: 10.1016/j.neulet.2005.09.010
Taylor, A. M., Christou, E. A., & Enoka, R. M. (2003). Multiple features of motor-unit activity influence force fluctuations during isometric contractions. J Neurophysiol, 90(2), 1350-1361. doi: 10.1152/jn.00056.2003
Taylor, A. M., Steege, J. W., & Enoka, R. M. (2002). Motor-unit synchronization alters spike-triggered average force in simulated contractions. J Neurophysiol, 88(1), 265-276.
Tracy, B. L., Dinenno, D. V., Jorgensen, B., & Welsh, S. J. (2007). Aging, visuomotor correction, and force fluctuations in large muscles. Med Sci Sports Exerc, 39(3), 469-479. doi: 10.1249/mss.0b013e31802d3ad3
Tunik, E., Saleh, S., & Adamovich, S. V. (2013). Visuomotor discordance during visually-guided hand movement in virtual reality modulates sensorimotor cortical activity in healthy and hemiparetic subjects. IEEE Trans Neural Syst Rehabil Eng, 21(2), 198-207. doi: 10.1109/tnsre.2013.2238250
Vaillancourt, D. E., Haibach, P. S., & Newell, K. M. (2006). Visual angle is the critical variable mediating gain-related effects in manual control. Exp Brain Res, 173(4), 742-750. doi: 10.1007/s00221-006-0454-2
Vaillancourt, D. E., Larsson, L., & Newell, K. M. (2002). Time-dependent structure in the discharge rate of human motor units. Clin Neurophysiol, 113(8), 1325-1338.
van Doorn, R. R., & Unema, P. J. (2005). Effects of adaptation to altered display gain on the control of single aimed movements. Motor Control, 9(1), 3-22.
van Doorn, R. R., Unema, P. J., & Hendriks, E. J. (2005). The locus of adaptation to altered gain in aimed movements. Hum Mov Sci, 24(1), 31-53. doi: 10.1016/j.humov.2005.03.001
Yao, W., Fuglevand, R. J., & Enoka, R. M. (2000). Motor-unit synchronization increases EMG amplitude and decreases force steadiness of simulated contractions. J Neurophysiol, 83(1), 441-452.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-22起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-22起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw