進階搜尋


下載電子全文  
系統識別號 U0026-0608201411492500
論文名稱(中文) 串聯式液壓混合動力車之防鎖死煞車系統及節能效益之研究
論文名稱(英文) A Study of Energy Saving in Series Hydraulic Hybrid Vehicle with Anti-lock Brake System
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 李彥宏
研究生(英文) Yen-Hung Lee
學號 N16001765
學位類別 碩士
語文別 中文
論文頁數 121頁
口試委員 指導教授-施明璋
口試委員-陳國聲
口試委員-趙儒民
口試委員-林裕城
中文關鍵字 串聯式液壓混合動力車  液壓元件數學模型  液壓混合車節能效益  液壓防鎖死煞車系統 
英文關鍵字 Series hydraulic hybrid vehicle  Hydraulic components mathematical model  Hydraulic hybrid vehicle energy saving efficiency  Hydraulic anti-lock braking system 
學科別分類
中文摘要 串聯式液壓混合動力車(SHHV)為新時代的節能車款,使用液靜壓迴路取代機械傳動系統驅動車體,可使引擎工作於高效率區間,亦可於煞車過程中回收車體之動能。本文以3.5噸之小貨車為背景,分析將其改裝為串聯式液壓混合動力車所需之液壓迴路架構;為提升煞車過程中之能量回收效益並兼顧行駛安全,本文亦提出針對串聯式液壓混合動力車專用之液壓防鎖死煞車系統設計概念。透過選取適當之液壓元件規格並分析其數學模型,建立不同行駛模式下完整之液靜壓迴路整體數學模型;最後,整合所建立之數學模型及液壓防鎖死剎車系統,評估串聯式液壓混合動力車之節能效益。由軟體模擬結果可知,串聯式液壓動力車相較於傳統車輛約可節省40~50%之油耗;加入液壓防鎖死煞車系統後,於煞車過程中約可回收60~80%之煞車動能。
英文摘要 As an energy saving vehicles of new era, Series Hydraulic Hybrid Vehicles(SHHV) use hydrostatic circuit to replace tradition mechanical transmission, which allowed engine work in high efficiency region and recover vehicle’s kinetic energy during braking. In this article, 3.5 tons of small truck is used as background to analysis the hydraulic circuit structure of SHHV. To raise the energy saving efficiency during braking and driving safety, a new hydraulic anti-lock braking system design concept for SHHV will be proposed in this article. By selecting the appropriate specification of hydraulic components and analyzing the mathematical model of hydraulic components, complete hydrostatic mathematic model of SHHV in different driving mode is established. Finally, with the integration of mathematical model of SHHV and hydraulic anti-lock brake system, the energy saving efficiency of SHHV will be discussed. From the simulation results, the fuel consumption of SHHV is about 40 to 50 percent less than traditional vehicle, and about 60 to 80 percent of kinetic energy recovered during braking with hydraulic anti-lock brake system added.
論文目次 摘要 I
Extended Abstract II
誌謝 VI
目錄 VII
表目錄 XII
圖目錄 XIII
符號說明 XVIII
第一章 緒論 1
1-1 混合動力車簡介 1
1-2 液壓防鎖死煞車系統設計背景 5
1-3 研究動機 6
1-4 研究目的 6
1-5 本文架構 7
第二章 串聯式液壓混合動力車結合防鎖死煞車系統之架構介紹 8
2-1 串聯式液壓混合動力車結合防鎖死煞車系統之工作原理 8
2-1-1 驅動模式 9
2-1-2 煞車模式 10
2-1-3 引擎效率分析 11
2-2 串聯式液壓混合動力車結合防鎖死煞車系統之迴路設計 12
2-2-1 定量液壓泵 13
2-2-2 可變量泵/馬達 14
2-2-3 蓄壓器 16
2-2-4 比例流量閥 17
2-2-5 單向閥 18
2-2-6 方向閥 18
2-2-7 伺服閥 19
2-2-8 溢流閥 19
2-2-9 電磁閥 19
2-2-10 液壓油箱 20
2-3 串聯式液壓混合動力車結合防鎖死煞車系統之迴路狀態 20
2-3-1 怠速停止(P)/慣性滑行(D/R) 21
2-3-2 正向/反向行駛(D/R) 22
2-3-3 正向/反向煞車(D/R) 24
第三章 串聯式液壓混合動力車結合防鎖死煞車系統之數學模型 26
3-1 液壓元件數學模型 27
3-1-1 定量泵 28
3-1-2 可變量泵/馬達 33
3-1-3 蓄壓器 37
3-1-4 比例流量閥 41
3-1-5 單向閥 42
3-1-6 方向閥 43
3-1-7 伺服閥 46
3-1-7 電磁閥 47
3-2 串聯式液壓混合動力車行駛控制邏輯 48
3-3 行駛模式液壓迴路數學模型 51
3-3-1 正向/反向行駛(D/R) (液壓泵供油) 51
3-3-2 正向/反向行駛(D/R) (蓄壓器供油) 54
3-3-3 正向/反向煞車(D/R) 57
3-3-4 怠速停止(P) / 慣性滑行(D/R) 59
3-4 車輛道路行駛數學模型 62
3-4-1 行駛阻力分析 62
3-4-1-1 空氣阻力 63
3-4-1-2 滾動阻力 63
3-4-1-3 傳動系統慣性 64
3-4-2 行駛受力分析 65
3-4-2-1 傳統車輛 65
3-4-2-2 串聯式液壓混合動力車 66
3-5 液壓防鎖死煞車系統設計 67
3-5-1 設計背景 67
3-5-2 防鎖死煞車系統數學模型 69
3-5-3 最佳煞車力滑差點搜尋 73
3-5-4 液壓防鎖死控制邏輯制定 75
第四章 串聯式液壓混合動力車結合防鎖死煞車系統之行駛模擬 77
4-1 節能效益測試規則建立 77
4-1-1 測試路線選擇 77
4-1-2 節能效益評估方式 79
4-2 行駛模擬結果 80
4-2-1 傳統車輛行駛模擬 81
4-2-2 串聯式液壓混合動力車行駛模擬 83
4-2-3 串聯式液壓動力車節能效益計算 88
4-2-4 高效率液壓泵/馬達應用於SHHV之節能效益 89
4-2-5 液壓迴路工作模式效率計算 94
4-3 液壓防鎖死煞車系統效益模擬 97
4-3-1 乾燥路面煞車模擬 97
4-3-1-1 無液壓防鎖死煞車控制 97
4-3-1-2 液壓防鎖死煞車控制(控制滑差0.2) 99
4-3-1-3 液壓防鎖死煞車控制(變滑差控制) 101
4-3-2 潮濕路面煞車模擬 104
4-3-2-1 無液壓防鎖死煞車控制 104
4-3-2-2 液壓防鎖死煞車控制(控制滑差0.2) 106
4-3-2-3 液壓防鎖死煞車控制(變滑差控制) 107
第五章 結論與建議 110
5-1 結論 110
5-2 建議 111
參考文獻 113
附錄 117
參考文獻 [1] “Hybrid vehicle,” http://en.wikipedia.org/wiki/Hybrid_vehicle
[2] K.E. Rydberg, “Energy Efficient Hydraulic Hybrid Drives,” Scandinavian International Conference on Fluid Power, June, 2009.
[3] ”UPS First In Industry to Purchase Hydraulic Hybrid Vehicles,” http://www.pressroom.ups.com
[4] T. Liu, J. Zheng, Y. Su, J. Zhao, “A Study On Control Strategy of Regenerative Braking in the Hydraulic Hybrid Vehicle Based on ECE Regulations,” Mathematical Problems in Engineering Volume 2013, Article ID 208753, 2013.
[5] J. Zhao, X. Liu, Z. Xin, Y. Han, “Research on the Energy-Saving Technology of Concrete Mixer Truck,” ICIEA 2009, pp. 3551-3554, 2009.
[6] 蔡德隆, “串聯式液壓混合車之液靜壓系統驅動控制與節能效益之研究,” 國立成功大學機械工程研究所碩士論文, 2012.
[7] 蘇庭弘, “節能液壓混合車傳動系統之研究,” 國立成功大學機械工程研究所碩士論文, 2013.
[8] L.A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353, 1965.
[9] “Hydrid Brochure,” Innas BV, Netherlands.
[10] H.E. Merritt, ”Hydraulic Control Systems,” John Wiley & Sons Inc., 1967.
[11] E.B. Wylie, V.L. Streeter, L. Suo, “Fluid Transients in System,” Prentice Hall, 1993.
[12] 中華汽車CM4252堅達柴油小貨車規格表, 1990.
[13] K.E. Rydberg, “On Performance Optimization and Digital Control of Hydrostatic Drives for Vehicle Applications,” Ph.D. thesis, Linköping University, Sweden, 1983.
[14] A. Zahid, “Accumulators and their applications,” Annual Southern Industry Fluid Power Conference and Exhibit, Huntsville Alabama, November, 1966.
[15] G.R. Keller, “Fine-tune Accumulator Selection by Calculating Polytropic Exponent K,” Hydraulics& Pneumatics, Vol.35, pp. 100-104, February, 1982.
[16] “Bladder-type accumulator,” Rexroth Catalogs.
[17] G.L. Smith, “Commerical Vehicle Performance and Fuel Economy,” SAE Paper, SP-355, 1970.
[18] T.D. Gillespie, “Fundamentals of Vehicle Dynamics,” Society of Automotive Engineers, Inc., 2000.
[19] D. Cole, “Elementary Vehicle Dynamics,” course notes in M.E., The University of Michigan, 1972.
[20] 吳銘欽, “汽車防鎖死剎車系統控制之研究,” 國立成功大學機械工程研究所博士論文, 2002.
[21] “我國汽車煞車距離與行車速度關係之測試與研究,” 交通部運輸研究所, 1995.
[22] H. Dugoff, P.S. Fancher, L. Segel, “An analysis of tire traction properties and their influence on vehicle dynamic performance,” SAE Paper No.700377, 1970.
[23] J.J. Henry, W.E. Meyer, “The Simulation of the Traction on Wet Pavements,” Fédération Internationale des Sociétés d'Ingénieurs des Techniques de l'Automobile, pp. 121-128, 1980.
[24] 張瑞宗, “模糊脈寬調變控制液壓防鎖死煞車系統之研究,” 國立成功大學機械工程研究所碩士論文, 1999.
[25] 李連春, “液壓防止鎖死煞車系統控制器設計之研究,” 國立成功大學機械工程研究所碩士論文, 1997.
[26] “New European Driving Cycle,” http://en.wikipedia.org/wiki/New_European_Driving_Cycle
[27] K.A. Stelson, ”Recognizing Inefficiency and Energy Loss in Fluid Power Systems,” Mechanical Engineering and Director, CCEFP, University of Minnesota, 2011.
[28] C. Yigen, ”Control of a Digital Displacement Pump,” Master Thesis, Aalborg University, 2012.
[29] L. Wadsley, ”Optimal System Solutions Enabled by Digital Pumps,” In International Exposition for Power Transmission(IFPE) in Las Vegas, 2011.
[30] Federal Transit Administration, “Design & Development of the LCO-140H Series Hydraulic Hybrid Low Floor Transit Bus,” FTA Report No.0018, 2012.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw