進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0608201410504200
論文名稱(中文) 利用液相層析串聯式質譜儀鑑定蛋白上雌激素代謝物之特定修飾位點
論文名稱(英文) Identification of Site-Specific Modification of Estrogen Metabolites on Proteins via LC-MS/MS
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 102
學期 2
出版年 103
研究生(中文) 方捷銘
研究生(英文) Chieh-Ming Fang
學號 l36014142
學位類別 碩士
語文別 英文
論文頁數 91頁
口試委員 指導教授-陳淑慧
口試委員-李介仁
口試委員-徐睿良
中文關鍵字 雌激素代謝物  蛋白轉譯後修飾  4-烃雌二醇  胰島素 
英文關鍵字 estrogen metabolites  proteins post translation modification  4-hydroxyestradiol  insulin 
學科別分類
中文摘要 目前,許多被雌激素以及其活性代謝物以共價鍵修飾的蛋白已被認為與許多疾病的產生及進程有關。然而,因著仍缺乏更細微之分子層面的證據證明此類型活性代謝物所參與的角色以及其特定之修飾位點,阻礙了更深入之研究探討。於此研究中,我們利用奈流液相層析串聯式質譜儀報導了一種在生物體內、體外皆可觀察到修飾於蛋白上的鄰苯二酚雌激素,4-烃雌二醇(4OHE2)。
利用要用胰島素做為模型,搭配兩種二次質譜碎裂技術: 碰撞誘導解離(CID)以及電子轉移解離(ETD),在其A、B兩條蛋白序列上的特定胺基酸,如離胺酸(Lysine)、組胺酸(Histidine)以及胱胺酸(Cysteine)鑑定有4OHE2之共價鍵修飾,此外序列間的雙硫鍵鍵結處亦可發現此修飾。 以分子模型之模擬加以佐證發現,4OHE2的修飾使的胰島素在與其受體鍵結之區域有胺基酸位向之改變,此變動可能影響其與受體之鍵結能力進而影響此蛋白之功能性。功能性的測定,如:胰島素刺激之葡萄糖攝取吸收、胰島素誘發其受體之訊號傳導以及細胞周期等,實驗結果發現被4OHE2所修飾之胰島素相較於相同濃度之正常胰島素對於上述功能有降低或是抑制的效果,進而證實分子模型之論述。
進而利用搜尋引擎以及大範圍分析法鑑定在乳癌細胞或是人類血清中被內生性4OHE2所修飾的蛋白。經過多層篩選條件之過濾後的胜肽再利用手動確認其正確性。在鑑定出的蛋白中,由糖尿病患者血清中發現的4OHE2修飾於白蛋白(HSA)之Lys598的位點,此段序列被挑選利用商業化的白蛋白做更進一步的確效。
位點專一性活性代謝物於蛋白上之轉譯後修飾之鑑定有助於因雌激素代謝所帶來的生理紊亂做為機制上或醫療上的目標研究。
英文摘要 Covalent protein modifications by estrogens and their active metabolites have been suspected to play important roles in the development and progression of various diseases. The lack of molecular evidences of the active species involved and sites of modification has however averted more intensive investigation. In this study, we reported the identification of site-specific protein modifications of the catechol estrogen, 4-hydroxyl 17β-estradiol (4-OHE2), at the protein level in-vitro and in-vivo by nano-liquid chromatography-tandem mass spectrometry (LC-MS2).
Using therapeutic insulin as a model, 4OHE2 was identified to spontaneously form single or multiple covalent bonds on lysine and disulfide linkage sites of the A and B chains of insulin by collision-induced dissociation (CID) and electron transfer dissociation (ETD) via bottom-up and semi-top down approach. Molecular modeling showed that 4OHE2 modifications on these identified sites caused significant variations on the exposure of insulin receptor binding domain, which may affect protein interactions. This was evidenced by functional assays which indicated reduced efficacies of insulin-induced glucose uptake and IRS signaling pathway as well as cell cycle progression of MCF-7 cells by 4OHE2-modified insulin.
Endogenous 4OHE2 modified proteins in breast cancer cells (MCF-7 and MDA-MB-231) and human bloods were also identified by large scale analyses via automatic database search using multiple criteria and further validated by manual interpretation. Among the identified proteins, human serum albumin (HSA) in the plasma of female patients who have diabetes mellitus was identified to be modified by 4OHE2 on its lysine site and was further validated by purified HSA protein.
Identification of site-specific protein post translational modifications by active estrogen metabolites reveals new directions for mechanistic or therapeutic target studies of biological disorders associated with estrogen metabolism.
論文目次 中文摘要 I-II
Abstract III-IV
誌謝 V
Table of Contents VI-VIII
List of Figures and Tables IX-X
Abbreviations XI

Chapter1: Introductions
1.1 4-Hydroxy 17-ß Estradiol and Its Protein Adduct 1
1.2 Bottom-Up Proteomics by LC-MS/MS 4
1.2.1 Interpretation of MS2 Spectrum of CID and ETD Fragment Ions 4
1.3automatic Database Search 8
1.3.1 Scoring Scheme 10
1.3.2 Automatic Error Tolerant Search 12
1.3.3 Decoy Database Search 14
1.4 Introduction of Insulin 15
1.4.1 Signaling Transduction of Insulin 16
1.4.2 Relationship between Insulin and Cell Proliferation 18


Chapter 2: Experiment Procedure
2.1 Materials 20
2.2 4OHE2 covalent-bound amino acid and protein 21
2.3 Sample Preparation 22
2.3.1 Human Blood Collection 22
2.3.2 Cell Culture 22
2.3.3 Protein Digestion 23
2.3.4 Off-Line HILIC Fractionations 24
2.4 LC-MS/MS Analysis 25
2.5 Database Search 26
2.6 Functional Assay 27
2.6.1 Cell Culture 27
2.6.2 2-NBDG Glucose Uptake Measurements 27
2.6.3 Cell Signaling 28
2.7 Molecular Modeling 29

Chapter 3: Result
3.1 The mass shift resulted from 4OHE2 adduction 30
3.2 Identification of specific binding sites of 4OHE2 on insulin 32
3.3 Molecular modeling of 4OHE2-adducted insulin. 38
3.4 Functional effect of 4OHE2-adducted insulin 40
3.4.1 Glucose uptake 40
3.4.2 Insulin triggering signaling transduction pathway 42
3.4.3 Cell cycle 45
3.5 Endogenous 4OHE2 modified proteins 47
3.5.1 Initial search result by Mascot 49
3.5.2 Further validation of human serum albumin 51
Chapter 4: Conclusion 59
Reference 61
Appendix 67

List of Figures and Tables
Fig.1 Formation of estrogen metabolites and its DNA adducts 3
Fig.2 (A) b, y types of ions that generate from CID fragmentation. (B) c, z type of ions that generate from ETD fragmentation. 6
Fig.3 Neutral loss 7
Fig.4 Workflow of automatic database search in large-scale proteomics 9
Fig.5 The histogram of the score distribution with threshold p<0.05 and mass tolerance (A) ±0.1 Da (B) ± 1.0 Da (C) ± 2.5 Da 11
Fig.6 The result format in error tolerance search 13
Fig.7 The insulin signaling network 17
Fig.8 Insulin receptor binding sites on insulin 17
Fig.9 Phases of the cell cycle 19
Fig.10 Formation of 4OHE2-conjugated amino acids and disulfide linkage compound 31
Fig.11 XIC for 4OHE2 adducted and normal insulin 34
Fig.12 Time course study for 4OHE2 adducted insulin 35
Fig.13 (A) Fragmentation in ETD, which preferentially cleavages on the disulfide linkage site. (B) Fragmentation in CID 36
Fig.14 Molecular modeling of 4OHE2 modified on Cys7 of insulin ß-chain. 39
Fig.15 Molecular modeling of 4OHE2 modified on Cys7 and His10 of insulin ß-chain 39
Fig.16 Glucose uptake of normal insulin and the mixture 41
Fig.17 Cell signaling via phosphorylation of IRS in (A) L6 cells (B) MCF-7 cells 43
Fig.18 G0/G1 phase of MCF-7 cell, treating with 4OHE2-adduted insulin 46
Fig.19 S+G2/M phase of MCF-7 cell, treating with 4OHE2-adduted insulin 46
Fig.20 Workflow and filtering criteria for Mascot search 48
Fig.21 XIC for unmodified and 4OHE2-modified peptide in (A) pure HSA (B) patient’s blood (C) pure HSA incubated with 4OHE2, (D) spiked pure HSA+4OHE2 into patient’s blood 53
Fig.22 MS2 for (A) In-vivo 4OHE2-modified peptide; (B) In-vitro 4OHE2-modified peptide; (C) a synthetic peptide (D) In-vivo unmodified peptide 54
Fig.23 Validation of 4OHE2-modified peptide 58

Table. 1 Common database search engine and websites 9
Table.2 Identification of in-vitro 4OHE2 modification sites on insulin 37
Table.3 Possible in-vivo 4OHE2-modified peptides from the diabetes patient’s blood 50

參考文獻 1. Liehr, J.G., Fang, W.F., Sirbasku, D.A. & Ari-Ulubelen, A. Carcinogenicity of catechol estrogens in Syrian hamsters. J Steroid Biochem 24, 353-6 (1986).
2. Li, J.J. & Li, S.A. Estrogen carcinogenesis in Syrian hamster tissues: role of metabolism. Fed Proc 46, 1858-63 (1987).
3. Newbold, R.R. & Liehr, J.G. Induction of uterine adenocarcinoma in CD-1 mice by catechol estrogens. Cancer Res 60, 235-7 (2000).
4. Bolton, J.L., Trush, M.A., Penning, T.M., Dryhurst, G. & Monks, T.J. Role of quinones in toxicology. Chemical Research in Toxicology 13, 135-160 (2000).
5. Belous, A.R., Hachey, D.L., Dawling, S., Roodi, N. & Parl, F.F. Cytochrome P450 1B1-mediated estrogen metabolism results in estrogen-deoxyribonucleoside adduct formation. Cancer Res 67, 812-7 (2007).
6. Cavalieri, E. et al. Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 1766, 63-78 (2006).
7. Bucala, R., Fishman, J. & Cerami, A. Formation of covalent adducts between cortisol and 16 alpha-hydroxyestrone and protein: possible role in the pathogenesis of cortisol toxicity and systemic lupus erythematosus. Proc Natl Acad Sci U S A 79, 3320-4 (1982).
8. Epe, B., Hegler, J. & Metzler, M. Site-specific covalent binding of stilbene-type and steroidal estrogens to tubulin following metabolic activation in vitro. Carcinogenesis 8, 1271-5 (1987).
9. Markides, C.S. & Liehr, J.G. Specific binding of 4-hydroxyestradiol to mouse uterine protein: evidence of a physiological role for 4-hydroxyestradiol. J Endocrinol 185, 235-42 (2005).
10. Haaf, H., Li, S.A. & Li, J.J. Covalent binding of estrogen metabolites to hamster liver microsomal proteins: inhibition by ascorbic acid and catechol-O-methyl transferase. Carcinogenesis 8, 209-15 (1987).
11. Chen, D.R. et al. Characterization of estrogen quinone-derived protein adducts and their identification in human serum albumin derived from breast cancer patients and healthy controls. Toxicol Lett 202, 244-52 (2011).
12. Lin, C. et al. Hemoglobin adducts as biomarkers of estrogen homeostasis: elevation of estrogenquinones as a risk factor for developing breast cancer in Taiwanese women. Toxicol Lett 225, 386-91 (2014).
13. Okoh, V.O., Felty, Q., Parkash, J., Poppiti, R. & Roy, D. Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS One 8, e54206 (2013).
14. Mobley, J.A., Bhat, A.S. & Brueggemeier, R.W. Measurement of oxidative DNA damage by catechol estrogens and analogues in vitro. Chem Res Toxicol 12, 270-7 (1999).
15. Khan, W.A. & Khan, M.W.A. Cancer Morbidity in Rheumatoid Arthritis: Role of Estrogen Metabolites. Biomed Research International (2013).
16. Poirier, M.C., Santella, R.M. & Weston, A. Carcinogen macromolecular adducts and their measurement. Carcinogenesis 21, 353-9 (2000).
17. Zhang, Y., Fonslow, B.R., Shan, B., Baek, M.C. & Yates, J.R., 3rd. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113, 2343-94 (2013).
18. Bochkov, V.N. et al. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal 12, 1009-59 (2010).
19. Zhang, Z. et al. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7, 58-63 (2011).
20. Dupont, F.O., Gagnon, R., Ardilouze, J.L. & Auray-Blais, C. Determination of glycated and acetylated hemoglobins in cord blood by time-of-flight mass spectrometry. Anal Chem 83, 5245-52 (2011).
21. Bandeira, N., Tsur, D., Frank, A. & Pevzner, P.A. Protein identification by spectral networks analysis. Proc Natl Acad Sci U S A 104, 6140-5 (2007).
22. Huang, T.Y. & McLuckey, S.A. Gas-phase chemistry of multiply charged bioions in analytical mass spectrometry. Annu Rev Anal Chem (Palo Alto Calif) 3, 365-85 (2010).
23. Mikesh, L.M. et al. The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764, 1811-22 (2006).
24. Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J. & Hunt, D.F. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101, 9528-33 (2004).
25. Chrisman, P.A., Pitteri, S.J., Hogan, J.M. & McLuckey, S.A. SO2-* electron transfer ion/ion reactions with disulfide linked polypeptide ions. J Am Soc Mass Spectrom 16, 1020-30 (2005).
26. Wu, S.L. et al. Mass spectrometric determination of disulfide linkages in recombinant therapeutic proteins using online LC-MS with electron-transfer dissociation. Anal Chem 81, 112-22 (2009).
27. Paizs, B. & Suhai, S. Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24, 508-48 (2005).
28. Nesvizhskii, A.I. A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics 73, 2092-123 (2010).
29. Knudsen, G.M. & Chalkley, R.J. The effect of using an inappropriate protein database for proteomic data analysis. PLoS One 6, e20873 (2011).
30. Sadygov, R.G., Cociorva, D. & Yates, J.R., 3rd. Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat Methods 1, 195-202 (2004).
31. Tabb, D.L. et al. Statistical characterization of ion trap tandem mass spectra from doubly charged tryptic peptides. Anal Chem 75, 1155-63 (2003).
32. Schutz, F., Kapp, E.A., Simpson, R.J. & Speed, T.P. Deriving statistical models for predicting peptide tandem MS product ion intensities. Biochem Soc Trans 31, 1479-83 (2003).
33. Monroe, M.E. et al. VIPER: an advanced software package to support high-throughput LC-MS peptide identification. Bioinformatics 23, 2021-3 (2007).
34. Monroe, M.E., Shaw, J.L., Daly, D.S., Adkins, J.N. & Smith, R.D. MASIC: a software program for fast quantitation and flexible visualization of chromatographic profiles from detected LC-MS(/MS) features. Comput Biol Chem 32, 215-7 (2008).
35. Pappin, D.J., Hojrup, P. & Bleasby, A.J. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3, 327-32 (1993).
36. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-67 (1999).
37. Creasy, D.M. & Cottrell, J.S. Error tolerant searching of uninterpreted tandem mass spectrometry data. Proteomics 2, 1426-34 (2002).
38. Choi, H. & Nesvizhskii, A.I. False discovery rates and related statistical concepts in mass spectrometry-based proteomics. J Proteome Res 7, 47-50 (2008).
39. Elias, J.E., Haas, W., Faherty, B.K. & Gygi, S.P. Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2, 667-75 (2005).
40. Nesvizhskii, A.I. & Aebersold, R. Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4, 1419-40 (2005).
41. Huang, K. et al. How insulin binds: the B-chain alpha-helix contacts the L1 beta-helix of the insulin receptor. J Mol Biol 341, 529-50 (2004).
42. Menting, J.G. et al. How insulin engages its primary binding site on the insulin receptor. Nature 493, 241-5 (2013).
43. Kristensen, C. et al. Alanine scanning mutagenesis of insulin. J Biol Chem 272, 12978-83 (1997).
44. Biddinger, S.B. & Kahn, C.R. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 68, 123-58 (2006).
45. Gallagher, E.J. & LeRoith, D. Minireview: IGF, Insulin, and Cancer. Endocrinology 152, 2546-51 (2011).
46. Chappell, J. et al. Effect of insulin on cell cycle progression in MCF-7 breast cancer cells. Direct and potentiating influence. J Biol Chem 276, 38023-8 (2001).
47. Donald.Voet, J.V. Principles of Biochemistry, 1081 (John Wiley & Sons, Inc.).
48. Nicolis, S. et al. Neuroglobin modification by reactive quinone species. Chem Res Toxicol 26, 1821-31 (2013).
49. Piwowarska, J., Radowicki, S. & Pachecka, J. Simultaneous determination of eight estrogens and their metabolites in serum using liquid chromatography with electrochemical detection. Talanta 81, 275-80 (2010).
50. Pillon, N.J. et al. Structural and functional changes in human insulin induced by the lipid peroxidation byproducts 4-hydroxy-2-nonenal and 4-hydroxy-2-hexenal. Chem Res Toxicol 24, 752-62 (2011).
51. Taniguchi, C.M., Emanuelli, B. & Kahn, C.R. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7, 85-96 (2006).
52. Cohen, P. The twentieth century struggle to decipher insulin signalling. Nat Rev Mol Cell Biol 7, 867-73 (2006).
53. Teng, M.H., Bartholomew, J.C. & Bissell, M.J. Insulin effect on the cell cycle: analysis of the kinetics of growth parameters in confluent chick cells. Proc Natl Acad Sci U S A 73, 3173-7 (1976).
54. Capello, M., Ferri-Borgogno, S., Cappello, P. & Novelli, F. alpha-Enolase: a promising therapeutic and diagnostic tumor target. FEBS J 278, 1064-74 (2011).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw