進階搜尋


下載電子全文  
系統識別號 U0026-0608201215075700
論文名稱(中文) 6061-T6鋁合金滾軋板材在不同晶向方位及溫度下之動態剪切性能分析
論文名稱(英文) The Effects of Crystallographic Orientation and Temperature on the Dynamic Shear Properties of 6061-T6 Aluminum Alloy Plate
校院名稱 成功大學
系所名稱(中) 機械工程學系碩博士班
系所名稱(英) Department of Mechanical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 吳宗翰
研究生(英文) Tsung-Han Wu
學號 n16991635
學位類別 碩士
語文別 中文
論文頁數 153頁
口試委員 指導教授-李偉賢
口試委員-王俊志
口試委員-黃永茂
中文關鍵字 6061鋁合金  晶向方位  動態剪切  應變速率 
英文關鍵字 Dynamic shear  6061 aluminum alloy  crystallographic orientation  strain rate 
學科別分類
中文摘要 本文主要是利用霍普金森扭轉試驗機來探討6061鋁合金滾軋板材在不同晶向方位動態剪切荷載下之塑性變形與破壞行為。扭轉試片分別沿著板材之滾軋方向(Longitudinal-L方向)、垂直於板材之滾軋方向(Transverse-T方向)及通過板厚之方向(Through Thickness-TT方向)切割加工,再經固溶、析出處理(T6)後於應變速率2×103 s-1、3×103 s-1、4×103 s-1以及溫度-150℃ 、25℃ 、300℃條件下進行剪切變形測試。藉由巨觀性質、微觀結構來探討不同晶向方位之動態剪切塑變行為之影響;同時引用一構成方程式來描述其於高速剪切行為與特性。
在巨觀分析方面,由實驗結果顯示6061鋁合金在三個晶向方位上的機械性質受剪應變速率、溫度及剪應變量之影響甚鉅,在相同溫度條件下,其塑流剪應力值、破壞剪應變量、加工硬化率、應變速率敏感性係數與溫度敏感性係數在三個方位下皆會隨著剪應變速率的提升而增加;在相同剪應變速率條件下,以上機械性質皆會隨著溫度的升高而下降。而在不同晶向上,T、L、TT方向之破壞應力值差異性不大,而破壞韌性值差異性較明顯,T方向破壞剪應變值明顯高於L、TT方向,TT方向則破壞剪應變量最小。
在微觀結構方面,利用掃描式電子顯微鏡(SEM)與光學顯微鏡(OM)進行之破壞形貌與金相組織分析顯示,破斷面韌窩組織隨應變速率與溫度的提高而有越密的趨勢。而在不同晶向上T方向之破斷面變形程度明顯大於L與TT方向;而破斷區域之金相組織顯示,剪斷區附近之晶粒流線扭曲程度,隨溫度與應變速率的增加也有上升的趨勢。而在不同晶向上,T與L方向在各實驗條件下晶粒扭曲程度不相上下,而TT方向無明顯的晶粒扭曲現象。
英文摘要 The dynamic shear deformation behaviour and fracture characteristics of rolled 6061 aluminum alloy plate under different crystallographic orientations and temperature. Cylindrical torsion specimens will be prepared from rolled plate with three different crystallographic orientations, i.e. longitudinal(L), transverse(T) and through-thickness(TT). After machining, all specimens will be solution heat treated at 565℃ for 1.5 h and aged at 171℃for 16 h. The torsion tests will be carried out using a split-Hopkinson torsional bar system. Shear deformation is conducted at temperatures of -150℃, 25℃ and 300℃ under strain rates ranging from 2×103s-1 to 4×103s-1, respectively.
The experimental results indicate that the shear flow response is found to be sensitive to the strain, strain rate and temperature. The flow stress, fracture strain, work hardening rate, strain rate sensitivity all increase with the increasing strain rate for a fixed temperature, but decrease with the increasing temperature under a constant strain rate. The fracture stress of T, L and TT are not significant but the fracture strain of transverse direction is higher than L and TT.
From the SEM observations, it is found that the fracture surfaces are characterized by a dimple structure, which is indicative of a ductile failure mode. The morphology and the density of these dimples are influenced greatly by strain rate and temperature conditions. Optical microscopy observations reveal that grain of the fracture surfaces are twisted into band like features.
論文目次 中文摘要 I
ABSTRACT II
誌謝 III
總目錄 IV
表目錄 VII
圖目錄 IX
符號說明 XXI
第一章 前言 1
第二章 理論與文獻回顧 3
2-1 鋁合金概述 3
2-2 6061鋁合金簡介 3
2-3 塑性變形之機械測試類別 4
2-4 一維扭轉波傳理論 6
2-5 霍普金森扭轉試驗機原理 8
2-6 材料塑性變形行為之特性 11
2-7 材料變形構成方程式 14
第三章 實驗方法與步驟 27
3-1試件製作 27
3-2 實驗儀器設備 28
3-2-1 霍普金森扭轉試驗機 28
3-2-2訊號處理裝置 29
3-2-3 掃描式電子顯微鏡 (SEM) 29
3-2-4 光學顯微鏡 (OM) 30
3-3 實驗方法與步驟 30
3-3-1 動態扭轉試驗 30
3-3-2 破斷面之觀察 (SEM) 31
3-3-3 試件金相之觀察 (OM) 31
第四章 實驗結果與討論 38
4-1 剪應力-剪應變曲線之討論 38
4-2 加工硬化率之探討 39
4-3 應變速率效應 41
4-4 溫度效應 42
4-5 熱活化體積 43
4-6 理論溫升量 44
4-7 材料變形組構方程式 46
4-8 微觀分析 47
4-8-1 破壞形貌觀察 (SEM) 47
4-8-1-1破斷面形貌之觀察 47
4-8-1-2 試件破壞形貌之觀察 48
4-8-2 金相組織觀察 (OM) 49
第五章 結論 146
參考文獻 149

參考文獻 1. H. Kolsky, “An Investingaation of The Mechanical Properties of Materials at Very High Rates of Loading”, Proceedings of the Physical Society, Vol. 62, pp. 676-699, 1949.
2. B. M. Butcher and C. H, Karnes, “Strain Rate Effects In Metals”, Journal of Applied Physics, Vol. 37, pp. 402-411, 1964.
3. F. E. Hauser, “Techniques for Measuring Stress-Strain Relations at High Strain Rates”, Experimental Mechanics, Vol. 6, pp. 395-402, 1966.
4. Y. Leroy and M. Ortiz, In Mechanical Properties of Materials at High Rate of Strain, (ed. J. Harding), pp. 257-265, 1989.
5. D. J. Steinberg, S. G. Cochran and N. W. Guinan, “A Constitutive Model for Metals Applicable at High Strain Rate”, Journal of Applied Physics, Vol. 51, No.3, pp. 1498-1504, 1980.
6. Y. Bai and B. Dodd, Adiabatic Shear Localization , Pergamon Press, pp.80-91,1992.
7. J.T. Staley and D.J. Lege, “Advances in aluminium alloy products for structural applications in transportation”, Journal de Physique IV, Colloque C7, supplément au Journal de. Physique III Vol. 3 (1993), p. 179-190.
8. NITIN P. WASEKAR, N. RAVI, P. SURESH BABU, L. RAMA KRISHNA, and G. SUTTARARAJAN, “High-Cycle Fatigue Behavior of Microarc Oxidation Coatings Deposited on a 6061-T6 Al Alloy”, Metal. Mater. Trans. A, 2010 Vol.41A,PP. 255-265.
9. G. E. Totten and D. S. MacKenzie, Handbook of Aluminum, Volume 1, Physical Metallurgy and Processes, pp.881-914,2003.
10. 金重勳, 機械材料, 復文書局, pp.363-381, 1995.
11. D.J. Chakrabarti and D.E. Laughlin, “Phase relations and precipitation in Al–Mg–Si alloys with Cu additions”, Prog. Mater. Sci., 2004, Vol.49,PP. 389-410.
12. I. Dutta and S.M. Allen , “A calorimetric study of precipitation in commercial aluminium alloy 6061”, J.Mater. Sci. Lett., 1991, vol.10, PP.323-326.
13. M. Murayama and K. Hono, “Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys”, Acta Mater., 1999, vol.47, pp. 1537-1548.
14. G. A. Edwards, K. Stiller, G. L. Dunlop and M. J. Cooper, “The precipitation sequence in Al–Mg–Si alloys”, Acta Mater., 1998, Vol.46, pp.3893-3904.
15. S. J .Andersen, H. W. zandbergen, J. Jansen, c. Traeholt, u. Tundal and O. Reiso, “The crystal structure of the β’’ phase in Al–Mg–Si alloys ", Acta Mater., 1998,Vol.46, pp3283-3298.
16. M.H. Jacobs, “The structure of the metastable precipitates formed during ageing of an Al-Mg-Si alloy”, Phil. Mag., 1972,Vol.26,pp.1
17. Y. Ohmori, L. C. Doan, Y. Matsuura, S. Kobayashi and K. Nakai, “Morphology and crystallography of β-Mg2Si precipitation in Al-Mg-Si alloys”, Mater. Trans., 2001, Vol.42, pp. 2576–2583.
18. M. A. Meyers and L. E. Murr, Shock Waves and High-Strain-Rate Phenomena in Metals, Plenum Press, pp. 129-167, 1981.
19. ASM Handbook, Metals Handbook, American Society for Metals, pp. 215-230, 1978.
20. U. S. Lindholm and L. W. Yeakly, “High Strain Rate Testing: Tension and Compression”, Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
21. M. A. Meyers, Dynamic Behavior of Materials, A Wiley-Interscience Publication, pp. 23-65, 1994.
22. J. D. Campbell “, Dynamic Plasticity: Macroscopic and Microscopic Aspects,” Materials Science and Science Engineering, Vol. 12, pp. 3-21, 1973.
23. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
24. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel”, The Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
25. A. M. Eleiche and J. D. Campbell, “Strain-Rate Effects During Reverse Torsional Shear”, Experimental Mechanics, Vol. 16, pp. 281-290, 1976.
26. J. Harding and J. Huddart, “The Use of the Double-Notch Shear Test in Determining the Mechanical Properties of Uranium at Very High Rates of Strain”, Proc. 2nd Conf. Mechanical Properties of Materials at High Rates of Strain, Inst. Physics, pp. 49-61, 1980.
27. A. Seeger, “The Generation of Lattice Defects by Moving Dislocations, and its Application to the Temperature Dependence of the Flow-Stress of FCC Crystals”, The Philosophical Magazine, Vol. 46, pp. 1194-1217, 1955.
28. U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum”, Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
29. H. Conrad, “Thermally Activated Deformation of Metals”, Journal of Metals, pp. 582-588, 1964.
30. W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates”, Journal of Applied Physics, Vol. 38, pp. 1863-1869, 1967.
31. J. D. Campbell and A. R. Dowling, “The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading”, Journal of Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
32. J. Harding, “The Effect of High Strain Rate on Material Properties”, Materials at High Strain Rate on Material Properties, pp. 133-186, 1987.
33. Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 104-124, 1992.
34. J. D. Campbell, A. M. Eleiche, and M. C. C. Tsao, Fundamental Aspects of Structural Alloy Design, Plenum Publishing Corp. New York, pp. 545-563, 1977.

35. R. W. Klopp, R. J. Clifton and T. G. Shawki, “Pressure Shear Impact and Dynamic Viscoplastic Response of Metals”, Mechanics of Materials, Vol. 4, pp. 375-385, 1985.
36. F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations”, Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
37. F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Metals and High Strength Alloy Steels, in High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and other Advanced Materials”, AD-Vol. 48, pp. 121-126, 1995.
38. H. Kobayashi and B. Dodd, “A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth”, International Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.
39. A. S. Khan and H. Zhang, “Mechanically Alloyed Nanocrystalline Iron and Copper Mixture: Behavior and Constitutive Modeling over a Wide Range of Strain Rates”, International Journal of Plasticity, Vol. 16, pp. 1477-1492, 2000.
40. R. Liang and A. S. Khan, “A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals over a Wide Range of Strain Rates and Temperatures”, International Journal of Plasticity, Vol. 15, pp. 963-980, 1999.
41. S. C. Bergsma, M. E. Kassner , X. Li and M. A. Wall, “Strengthening in the new aluminum alloy AA 6069”, Mater. Sci . Eng. A, 1998, A254, pp.112-118.
42. L. Shi and D. O. Northwood, “The Mechanical Behavior of an AISI Type 310 ,” Acta Metallurgica et Materialia, Vol. 43, pp. 453-460, 1995.
43. CHONG-SUNG PARK, MYUNG-HO KIM, CHONGMU LEE*, “A theoretical approach for the thermal expansion behavior of the particulate reinforced aluminum matrix composite,” Journal of Materials Science 36 (2001) 3579-3587.
44. Mohammad Riahi and Hamidreza Nazari, “Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation ,” Int J Adv Manuf Technol (2011) 55:143–152
45. R. Kapoor and S. Nemat-Nasser, “Determination of Temperature Rise during High Strain Rate Deformation,” Mechanics of Materials, Vol. 27, pp. 1-12, 1998.
46. 林永慶,“應變速率與溫度在鋁鈧合金動態剪切性能上之效應分析”國立成功大學機械工程研究所碩士論文, 2005.
47. 李南瑋,“生醫鈦合金之動態剪切變形與破壞行為分析”國立成功大學機械工程研究所碩士論文, 2007.
48. 謝牧勳,“溫度及應變速率在AISI 4140合金鋼動態剪切性能上之效應分析”國立成功大學機械工程研究所碩士論文, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw