進階搜尋


下載電子全文  
系統識別號 U0026-0608201016301200
論文名稱(中文) 運用福衛二號高時空分辨率衛星遙測影像進行自然災害緊急應變標準作業程序之制定─以崩塌及森林火災為例
論文名稱(英文) Standardizing the Operation Procedure of Emergency Response to Natural Disasters Using Formosat-2 High Spatiotemporal Resolution Imagery: Example of Landslides and Forest Fires
校院名稱 成功大學
系所名稱(中) 衛星資訊暨地球環境研究所
系所名稱(英) Institute of Satellite Informatics and Earth Environment
學年度 98
學期 2
出版年 99
研究生(中文) 郭譯聰
研究生(英文) Yi-Cong Kuo
學號 l9697401
學位類別 碩士
語文別 中文
論文頁數 71頁
口試委員 指導教授-劉正千
口試委員-張智華
口試委員-王光華
中文關鍵字 自然災害  緊急應變  福爾摩沙衛星二號  先進陸地成像儀  福衛二號影像自動處理系統  崩塌與土石流專家輔助圈繪系統 
英文關鍵字 Natural Disasters  Emergency Response  Formosat-2  Advanced Land Imager  F-2AIPS  LEAMS 
學科別分類
中文摘要 自然界中發生的異常現象危害到人類生命財產及經濟活動時,稱為自然災害或天然災害。近年來受到全球暖化與氣候變遷的影響,全球自然災害事件頻傳。然而透過災前及早預警、災時即時掌握災情資訊、災後改善評估,許多大規模的傷亡可因而避免。現有的衛星科技因具有即時性、宏觀性、週期性等特性,在災害預警與監測環節上皆能扮演關鍵的角色,其資料亦成為災害管理的重要來源。在眾多的衛星平臺中,我國自主控制的福爾摩沙衛星二號(福衛二號)因具備每日再訪之特性,使其在全球災害緊急應變上往往扮演重要且關鍵的角色,如2007年的加州大火事件與2004年的南亞海嘯事件。然而目前在災害發生時若遇上大量資料需要處理,過長的處理時間會喪失衛星遙測近即時之優勢。因此本研究將改善現有的方法,為每一種自然災害個別建立影像標準作業流程,期望藉此改善現有的瓶頸。
本研究針對林火與崩塌兩種自然災進行影像判釋與分析,並個別為其制定影像處理與判釋之標準作業程序。林火災害以2009年澳洲維多利亞省叢林火事件為例,應用福衛二號影像協同先進陸地成像儀(ALI)資料進行林火災害分析。研究成果顯示,由ALI紅光通道與短波紅外線通道繪製的散佈圖可以迅速取得火點分佈資訊;透過波段組合的應用不僅可以迅速辨識出林火燃燒區所在,藉由影像上濃煙資訊及燃燒區變化,更可對林火燃燒過程進行沙盤推演;合併使用Maximum likelihood與K-Means分類法可以快速測定燃燒區大小與範圍,應用在受大火煙霧影響之影像上使用者精度可達75.74%,應用在無大火煙霧影響之影像上使用者精度可達81.92%。
崩塌災害以2009年八八水災事件為例,發展應用福衛二號衛星影像進行崩塌地測繪之方法。研究成果顯示,結合福衛二號影像自動處理系統與崩塌與土石流專家輔助圈繪系統,可於災後三小時內取得使用者精度達86.3% 的崩塌地分佈資訊,不僅符合災害緊急應變之目的,更充分發揮遙測近即時的特性。
英文摘要 Natural disaster is the effect of an abnormal phenomenon that leads to the loss of lives and properties. Due to global warming and climate change, natural disaster occurs more and more frequently all over the world in recent years. However, considerable loss could be avoided through better information about the risk and onset of disasters, improved risk assessment, early warning, and disaster monitoring. Therefore, the use of existing space technology has been recognized to play a major role in supporting disaster management by providing accurate and timely information for decision making. Among various spaceborne platforms, Formosat-2 operated in a daily-revisit orbit has demonstrated to be advanatgeous in rapid response to global disasters. For example, It is successful monitor in 2007 California Wildfire and 2004 South Asia tsunami. However, the lack of standard operation procedure limits the speed and the automatic degree of image processing; in other words, it reduces the efficiency of emergency response. In order to overcome this limitation, we integrate the experience of image processing for Formosat-2, and then standardize the operation procedure in accordance with individual natural disasters.
The research focuses on forest fires and landslides, analysis and standardizes the operation procedure in accordance with individual natural disasters. The results of forest fires indicate that the information of fire distribution can be obtained quickly from the scatter plot of red channel and shortwave infrared channel; the application of band combinations can not noly identify the burned areas, but also retrive the process of combusion by the information of smoke and changes of combustion zones in images; the area and range of combustion zones can be measured by combining Maximum Likelihood with K-Means. The accuracy of the image that affect by smoke can reach to 75.74%, of the image of no smoke can reach to 81.92%.
The result of landslides indicates that it can be obtained the information of fire distribution that the accuracy of landslides interpretation can reach to 86.3% by combining Formosat-2 Automatic Image Processing System (F-2AIPS) with Landslide Expert Auxiliary Mapping System (LEAMS) after the disaster within three hours. It represents that the method of combining F-2AIPS and LEAMS is able to achieve to the goal of emergency response.
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xi
第 1 章 序論 1
1.1 研究背景 1
1.2 研究目的 4
1.3 論文架構 4
第 2 章 文獻回顧 6
2.1 衛星遙測在林火監測上之應用 6
2.1.1 野火燃燒原理與分類 6
2.1.2 衛星遙測影像的使用 6
2.1.3 火點偵測原理與影像波段選擇 7
2.1.4 燃燒區域動態變化 9
2.2 衛星遙測在崩塌地判釋之應用 10
2.2.1 崩塌原理與誘發因素 10
2.2.2 好發於台灣的崩塌地類型與崩塌地在遙測影像上之特徵 11
2.2.3 衛星影像判釋與圈繪崩塌地方法 12
第 3 章 2009維多利亞省叢林野火 14
3.1 研究緣起 14
3.2 研究資料與影像前處理 17
3.2.1 先進陸地成像儀 (Advance Land Imager) 影像 17
3.2.2 福爾摩沙二號衛星影像 19
3.2.3 影像前處理─福衛二號自動處理系統 24
3.3 研究區域 30
3.4 火點偵測 31
3.4.1 影像波段選擇 31
3.4.2 火點萃取 32
3.4.3 火點萃取結果與真實火點分佈比較 34
3.5 燃燒區域動態變化 35
3.5.1 研究影像使用上的困難 35
3.5.2 衛影像波段組合之應用 38
3.5.3 波段組合應用結果 41
3.5.4 燃燒區測繪方法 47
3.5.5 燃燒區率定結果精度評估 50
第 4 章 2009莫拉克颱風後崩塌地分佈分析 53
4.1 研究緣起 53
4.2 研究區域 54
4.3 崩塌地判釋與圈繪方法 55
4.3.1 光譜特性的應用─地表裸露地偵測 56
4.3.2 輔助資料之應用 57
4.3.3 空間特性的應用─崩塌潛勢獨立單元 60
4.4 判釋成果精度評估探討 61
4.5 影像處理與判釋速度評估探討 63
第 5 章 結論與建議 64
5.1 結論 64
5.2 建議 67
參考文獻 68
參考文獻 1. Alexander, D.: Natural disasters, Kluwer Academic Publishers, (1993).
2. Australian Government Bureau of Meteorology: Bushfire Weather. (2003).
3. Brian J. Skinner, Stephen C. Porter, and Park., J.: The Dynamic Earth, (2004).
4. Canty, M. J., Nielsen, A. A., and Schmidt, M.: Automatic radiometric normalization of multitemporal satellite imagery, Remote Sensing of Environment, 91, 441-451, (2004).
5. Cao, X., Chen, J., Matsushita, B., Imura, H., and Wang, L.: An automatic method for burn scar mapping using support vector machines, International Journal of Remote Sensing, 30, 577-594, (2009).
6. Cheney, N.: Bushfires-an integral part of Australia's environment, Year Book of Australia 1995, 77, 515-521, (1995).
7. Cheng, K. S., Wei, C., and Chang, S. C.: Locating landslides using multi-temporal satellite images, Monitoring of Changes Related to Natural and Manmade Hazards Using Space Technology, 33, 296-301, (2004).
8. Chuang, S. C., Chen, H., Lin, G. W., Lin, C. W., and Chang, C. P.: Increase in basin sediment yield from landslides in storms following major seismic disturbance, Engineering Geology, 103, 59-65, (2009).
9. Coulter, L. L., Stow, D. A., and Baer, S.: A frame center matching technique for precise registration of multitemporal airborne frame imagery, IEEE Trans. Geosci. Remote Sensing, 41, 2436-2444, (2003).
10. Dai, X. L., and Khorram, S.: The effects of image misregistration on the accuracy of remotely sensed change detection, IEEE Trans. Geosci. Remote Sensing, 36, 1566-1577, (1998).
11. Dennison, P., Charoensiri, K., Roberts, D., Peterson, S., and Green, R.: Wildfire temperature and land cover modeling using hyperspectral data, Remote Sens. Environ., 100, 212-222, (2006).
12. Dennison, P. E., and Roberts, D. A.: Daytime fire detection using airborne hyperspectral data, Remote Sens. Environ., 113, 1646-1657, (2009).
13. Du, Y., Teillet, P. M., and Cihlar, J.: Radiometric normalization of multitemporal high-resolution satellite images with quality control for land cover change detection, Remote Sensing of Environment, 82, 123-134, (2002).
14. Dymond, J. R., Ausseil, A. G., Shepherd, J. D., and Buettner, L.: Validation of a region-wide model of landslide susceptibility in the Manawatu-Wanganui region of New Zealand, Geomorphology, 74, 70-79, (2006).
15. Fraser, R. H., Li, Z., and Cihlar, J.: Hotspot and NDVI differencing synergy (HANDS): A new technique for burned area mapping over boreal forest, Remote Sens. Environ., 74, 362-376, (2000).
16. Gibson, P., and Power, C.: Introductory remote sensing: principles and concepts, Routledge, (2000).
17. Giglio, L., and Kendall, J. D.: Application of the Dozier retrieval to wildfire characterization - A sensitivity analysis, Remote Sens. Environ., 77, 34-49, (2001).
18. Gillespie, A., Kahle, A., and Walker, R.: Color enhancement of highly correlated images. II. Channel ratio and chromaticity transformation techniques, Remote Sensing of Environment, 22, 343-365, (1987).
19. Gillespie, T. W., Chu, J., Frankenberg, E., and Thomas, D.: Assessment and prediction of natural hazards from satellite imagery, Progress in Physical Geography, 31, 459-470, (2007).
20. Haydn, R., Dalke, G., Henkel, J., and Bare, J.: Application of the IHS color transform to the processing of multisensor data and image enhancement. paper presented, (1982).
21. Ho, C. S.: An introduction to the geology of Taiwan: explanatory text of the geologic map of Taiwan, Central Geological Survey, Ministry of Economic Affairs, Taipei, Taiwan, Republic of China, (1988).
22. Joyce, K. E., Belliss, S. E., Samsonov, S. V., McNeill, S. J., and Glassey, P. J.: A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters, Progress in Physical Geography, 33, 183-207, (2009).
23. Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., Roy, D., Descloitres, J., Alleaume, S., Petitcolin, F., and Kaufman, Y.: The MODIS fire products, Remote Sens. Environ., 83, 244-262, (2002).
24. Justice, C. O., and Korontzi, S.: A review of the status of satellite fire monitoring and the requirements for global environmental change research, SPB Academic Publishing bv {a}, (2001).
25. Kaufman, Y. J., Justice, C. O., Flynn, L. P., Kendall, J. D., Prins, E. M., Giglio, L., Ward, D. E., Menzel, W. P., and Setzer, A. W.: Potential global fire monitoring from EOS-MODIS, J. Geophys. Res.-Atmos., 103, 32215-32238, (1998).
26. Koutsias, N., and Karteris, M.: Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping, International Journal of Remote Sensing, 19, 3499-3514, (1998).
27. Kumar, K. V., Martha, T. R., and Roy, P. S.: Mapping damage in the Jammu and Kashmir caused by 8 October 2005 M-w 7.3 earthquake from the Cartosat-1 and Resourcesat-1 imagery, International Journal of Remote Sensing, 27, 4449-4459, (2006).
28. Lentile, L. B., Holden, Z. A., Smith, A. M. S., Falkowski, M. J., Hudak, A. T., Morgan, P., Lewis, S. A., Gessler, P. E., and Benson, N. C.: Remote sensing techniques to assess active fire characteristics and post-fire effects, Int. J. Wildland Fire, 15, 319-345, (2006).
29. Leonard, J. E., and McArthur, N. A.: A history of research into building performance in Australian bushfires. paper presented, (1999).
30. Lillesand, T. M., and Kiefer, R. W.: Remote Sensing and Image Interpretation, (1994).
31. Liu, C.-C., Chang, Y.-C., Huang, S., Yan, S.-Y., Wu, F., Wu, A.-M., Kato, S., and Yamaguchi, Y.: Monitoring the dynamics of ice shelf margins in Polar Regions with high-spatial- and high-temporal-resolution space-borne optical imagery, Cold Regions Science and Technology, 55, 14-22, (2009a).
32. Liu, C.-C., Shieh, C.-L., Wu, C.-A., and Shieh, M.-L.: CHANGE DETECTION OF GRAVEL MINING ON RIVERBEDS FROM THE MULTI-TEMPORAL AND HIGH-SPATIAL-RESOLUTION FORMOSAT-2 IMAGERY, River Research and Applications, 25, 1136-1152, (2009b).
33. Liu, C. C.: Processing of FORMOSAT-2 daily revisit imagery for site surveillance, IEEE Trans. Geosci. Remote Sensing, 44, 3206-3214, (2006).
34. Liu, C. C., and Chen, P. L.: Automatic extraction of ground control regions and orthorectification of remote sensing imagery, Opt. Express, 17, 7970-7984, (2009).
35. Liu, C. C., Liu, J. G., Lin, C. W., Wu, A. M., Liu, S. H., and Shieh, C. L.: Image processing of FORMOSAT-2 data for monitoring the South Asia tsunami, International Journal of Remote Sensing, 28, 3093-3111, (2007).
36. Liu, C. C., Wu, A. M., Yen, S. Y., and Huang, C. H.: Rapid locating of fire points from Formosat-2 high spatial resolution imagery: example of the 2007 California wildfire, International Journal of Wildland Fire, 18, 415-422, (2009c).
37. Liu, J., and Ma, J.: Imageodesy on MPI & GRID for co-seismic shift study using satellite optical imagery. In: The UK e-Science All Hands Meetings 2004, (2004).
38. Long, M.: A climatology of extreme fire weather days in Victoria, Australian Meteorological Magazine, 55, 3-18, (2006).
39. Lucas, C.: Bushfire Weather in Southeast Australia: Recent Trends and Projected Climate Change Impacts, Bushfire CRC, (2007).
40. Luke, R., and McArthur, A.: Bushfires in Australia, Canberra (Australia), (1978).
41. McMichael, A. J., Woodruff, R. E., and Hales, S.: Climate change and human health: present and future risks, The Lancet, 367, 859-869, (2006).
42. Morisette, J., Giglio, L., Csiszar, I., and Justice, C.: Validation of the MODIS active fire product over Southern Africa with ASTER data, International Journal of Remote Sensing, 26, 4239-4264, (2005).
43. Nelson, N. B., Siegel, D. A., and Michaels, A. F.: Seasonal dynamics of colored dissolved material in the Sargasso Sea, Deep-Sea Research I, 45, 931-957, (1998).
44. Nichol, J., and Wong, M. S.: Satellite remote sensing for detailed landslide inventories using change detection and image fusion, International Journal of Remote Sensing, 26, 1913-1926, (2005).
45. Pearlman, J., Segal, C., Liao, L., Carman, S., Folkman, M., Browne, B., Ong, L., and Ungar, S.: Development and operations of the EO-1 Hyperion imaging spectrometer. paper presented, (2000).
46. Pyne, S., Andrews, P., and Laven, R.: Introduction to wildland fire, John Wiley & Sons Inc, (1996).
47. Salvador, R., Valeriano, J., Pons, X., and Diaz-Delgado, R.: A semi-automatic methodology to detect fire scars in shrubs and evergreen forests with Landsat MSS time series, International Journal of Remote Sensing, 21, 655-671, (2000).
48. Schroeder, T. A., Cohen, W. B., Song, C., Canty, M. J., and Yang, Z.: Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon, Remote Sensing of Environment, 103, 16-26, (2006).
49. Sim, M.: Bushfires: are we doing enough to reduce the human impact? , Occupational and Environmental Medicine, (2002).
50. Singhroy, V.: SAR INTEGRATED TECHNIQUES FOR GEOHAZARD ASSESSMENT. In: Singh, R. P., and Furrer, R., eds. Natural Hazards: Monitoring and Assessment Using Remote Sensing Technique, Pergamon Press Ltd, Oxford, (1995).
51. Singhroy, V., Mattar, K., and Gray, A.: Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images, Advances in Space Research, 21, 465-476, (1998).
52. Thomas, P., and O, N.: Near-infrared forest fire detection concept, Applied Optics, 32, 5348-5355, (1993).
53. Ungar, S., Pearlman, J., Mendenhall, J., and Reuter, D.: Overview of the earth observing one (EO-1) mission, IEEE Trans. Geosci. Remote Sensing, 41, 1149-1159, (2003).
54. Wisner, B.: At risk: natural hazards, people's vulnerability and disasters, Routledge, (2004).
55. 內政部地政司衛星測量中心, https://www.moidlassc.gov.tw/satellite/DTM/DTM_03.htm, edited (2010).
56. 何春蓀: 普通地質學, 五南圖書出版公司, (1990).
57. 吳教安: 福爾摩沙衛星二號遙測影像應用於河川砂石資源開採區域判釋, 國立成功大學: 水利及海洋工程研究所, 碩士, 台南, (2006).
58. 周毓嘉: 東沙島土地覆蓋變遷之研究, 國立台灣海洋大學: 海洋環境資訊學系, 碩士論文, 基隆市, (2005).
59. 林信輝: 地震崩塌地現況調查及植生對策, 國立中興大學水土保持學系, (2000).
60. 林家慶: 應用福衛二號時間序列影像監測曾文水庫集水區崩塌地之時空變化, 成功大學: 地球科學研究所, 碩士論文, 台南, (2007).
61. 洪凱政: 應用多光譜影像多種特徵偵測崩塌地之研究, 國立成功大學: 測量及空間資訊學所, 碩士, 台南, (2009).
62. 洪瑞鄉: SPOT衛星影像應用於桃園海岸林植生監測, 國立台灣大學: 森林環境暨資源學研究所, 碩士論文, 台北, (2005).
63. 國家太空中心, http://www.nspo.org.tw/2008c/projects/project2/instrument.htm, edited (2010).
64. 張維恕: 應用衛星遙測影像進行大肚台地紅土範圍率定與中央山脈裸岩區之岩性分析, 國立成功大學: 地球科學研究所, 碩士, 台灣台南, (2006).
65. 黃俊偉: 大範圍地區土地使用分類之研究, 國立中興大學: 水土保持學系, 碩士論文, 台中, (2000).
66. 黃朝恩: 人類與自然災害, (1991).
67. 劉正千: 福爾摩沙二號衛星在全球災害緊急應變與地球環境監測應用之回顧. In: The FORMOSAT-2 5th Anniversary Conference, Hsinchu, Taiwan, (2009).
68. 劉守恆: 衛星影像於崩塌地自動分類組合之研究, 國立成功大學: 地球科學研究所, 碩士, (2002).
69. 劉進金, 翁勳政, 黃金鴻, and 楊明宗: 豪雨型崩塌地之遙測影像分析. In: 二十一世紀土木工程技術與管理研討會, 明新技術學院土木工程系, (2001).
70. 潘國樑: 遙測學大綱-遙測概念, 原理與影像判釋技術, , (2006).
71. 蘇文瑞, 葉家承, 張智昌, and 周學政: 遙測科技應用於國內外災害規模初步判釋之運用, 災害防救電子報, 第55期, 1-6, (2010).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-08-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2010-08-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw