進階搜尋


 
系統識別號 U0026-0607202021041800
論文名稱(中文) 智慧型數位控制式電源管理單元
論文名稱(英文) Intelligent Digitally Controlled Power Management Unit
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 劉智偉
研究生(英文) Chih-Wei Liu
學號 N28011116
學位類別 博士
語文別 英文
論文頁數 80頁
口試委員 口試委員-陳科宏
召集委員-邱煌仁
口試委員-陳景然
口試委員-蔡建泓
口試委員-魏嘉玲
指導教授-張簡樂仁
中文關鍵字 數位控制  直流-直流轉換器  電源管理晶片  低壓降調節器  管線控制 
英文關鍵字 Digital Control  DC-DC converter  Power Management IC  Low Dropout  Pipeline Control 
學科別分類
中文摘要 受益於製程與晶片設計技術的進步,相同尺寸的晶片系統得以整合多樣化的電路模組,為使用者帶來更便利的體驗。但是高功率密度的系統卻也造成大量的能量消耗,大幅降低可攜式產品的使用時間,為了妥善管理系統能量的分配,電源管理晶片的存在變得不可或缺。在電源管理晶片中,多種電壓調節器根據負載特性搭配系統需求以實現最佳的配置。數位控制式電源管理晶片使用硬體描述語言實現所需的功能,相較於傳統類比控制除了可有效減少周邊被動元件的數量外,我們同時利用數位訊號不連續的特性提出管線控制共享技術,將各相電壓調節器的控制迴路做適當的切割並重新排列,進而達到使用僅一組數位控制器同時控制多相電壓調節器來優化面積的效益。實驗結果驗證了管線控制共享技術,使用一組數位控制器同時輸出六組輸出電壓。另一方面,數位控制能藉由撰寫演算法輕易實現複雜的功能如電荷平衡演算法等機制以達到高效能電壓調節器的目的。然而在實際應用上,我們發現所設計之演算法是根據某些特定條件下推導出來,並無法因應系統狀態或是元件參數的變異做出修正,導致系統的效能將隨著使用時間逐漸變差。本研究在此提出了智慧型電源管理晶片的概念,此電源管理晶片能順應系統狀態變化情況,由此微幅調整控制器內部參數,使系統能在外在變因的影響下仍保有最佳化表現,此種自主調整方法技術亦透過實驗驗證不同類型的電壓調整器皆能在不同負載樣態下表現出最佳化效能。
英文摘要 Benefited from the advances in both integrated circuit (IC) manufacturing process and design technique, more functional circuit modules can be integrated into the IC chip of the same size to promote user experience. On the other hand, the high-power density system inevitably consumes large power, which greatly reduces the mobile usage time. In order to properly manage power consumption, power management ICs (PMIC) have become indispensable. The PMIC generally deploys multiple voltage regulators in accordance with different load specifications to achieve the best system configuration. Compared to the analog control, the digitally controlled PMIC uses hardware description language to carry out the design functions with far less external passive components. In this dissertation, a pipeline control sharing technique is proposed to make a good use of the discontinuous feature of the digital signal. The control loops of various voltage regulators are properly classified and re-arranged, such that only one digital controller is adequate to simultaneously control multi-phase voltage regulators within a small chip area. The experimental result validates the feasibility of the pipeline control sharing technique by showing the simultaneous control of six output voltages with only one digital controller. Regarding the functional performance, digital control can easily implement complex functions such as charge balance control to enhance the load transient response. However, the design algorithms are often derived from some specific conditions which is not adaptive to the variation of system state or circuit component. Consequently, the system performance could gradually deteriorate over time. In this dissertation, we propose the concept of intelligent PMIC. The intelligent PMIC can detect the variations of the system states, and then adjust the control parameters to keep the system at its optimal performance. The proposed adaptive tuning techniques are validated by different voltage regulators to show their robustness in response to different types of load demands.
論文目次 Contents
Abstract (Chinese)…………………………………………………………….…………..I
Abstract (English) ………………………………………………………………………III
Acknowledge…………………………………………………………………………...…V
Contents……………………………………………………….……………….……..…VII
List of Tables……………………………………………………………………………. IX
List of Figures…………………………………………..…………………...………….. XI
Chapter 1. Introduction………………………………………………………………..1
1-1. Background & Motivation 1
1-2. Organization of this Dissertation 5
Chapter 2. Pipeline Control Sharing Technique for Area Efficiency in PMIC …….8
2-1. Introduction of Power Management ICs 8
2-2. Digitally Controlled Power Management ICs 10
2-2.1 Control of the Power Module 10
2-2.2 Analysis of Different Signal Processing Sequences 12
2-3. Experimental Validation 19
2-4. Discussion 21
Chapter 3. Intelligent Charge Balance Control for Fast Transient Response …..22
3-1. Introduction 22
3-2. Principle of the Charge Balance Control 24
3-3. Proposed Intelligent Charge Balance Control 28
3-3.1 Constant-Duty-Ratio Charge Balance Control (CDR-CBC) 28
3-3.2 Triangle-Energy-Compensation Charge Balance Control (TEC-CBC)……………………………………………………………………………36
3-4. Discussion 47
Chapter 4. Optimal Adaptive Voltage Positioning Scheme…………………………49
4-1. Introduction of Adaptive Voltage Positioning 49
4-2. AVP Operation Mode and Small-Signal Model Analysis 50
4-2.1 AVP Stability Analysis 50
4-2.2 AVP Waveform Implication from Small-Signal Analysis 53
4-3. Adaptive Ri Tuning 54
4-3.1 Progressive Waveform-Shaping Algorithm (PWSA) 54
4-3.2 Tuning Process Shortening 56
4-4. Circuit Implementation and Experimental Results 58
4-4.1 Schematic Diagram of the Buck Converter and its Digital Controller 58
4-4.2 Performance of PWSA in the AVP Scheme 61
4-4.3 Comparison of Test Results and Specification 66
4-5. Discussion 67
Chapter 5. Conclusion and Future Prospect………………………………………..69
5-1. Conclusion 69
5-2. Future Prospect 70
References………………………………………………………………………………...72
List of Publications………………………………………………………………………79
Biography………………………………………………………………………………...80

參考文獻 References
[1] A. Dashtestani and B. Bakkaloglu, "A Fast Settling Oversampled Digital Sliding-Mode DC–DC Converter," in IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 1019-1027, Feb. 2015, doi: 10.1109/TPEL.2014.2307889.
[2] M. Kar, A. Singh, A. Rajan, V. De and S. Mukhopadhyay, "An All-Digital Fully Integrated Inductive Buck Regulator With A 250-MHz Multi-Sampled Compensator and a Lightweight Auto-Tuner in 130-nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 52, no. 7, pp. 1825-1835, July 2017, doi: 10.1109/JSSC.2017.2693243.
[3] F. Su, W. Ki and C. Tsui, "Ultra Fast Fixed-Frequency Hysteretic Buck Converter With Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications," in IEEE Journal of Solid-State Circuits, vol. 43, no. 4, pp. 815-822, April 2008, doi: 10.1109/JSSC.2008.917533.
[4] Y. Lee, S. Peng, C. Chiu, C. Wu, K. Chen, et al., "A Low Quiescent Current Asynchronous Digital-LDO With PLL-Modulated Fast-DVS Power Management in 40 nm SoC for MIPS Performance Improvement," in IEEE Journal of Solid-State Circuits, vol. 48, no. 4, pp. 1018-1030, April 2013, doi: 10.1109/JSSC.2013.2237991.
[5] C. Hsieh and K. Chen, "Adaptive Pole-Zero Position (APZP) Technique of Regulated Power Supply for Improving SNR," in IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2949-2963, Nov. 2008, doi: 10.1109/TPEL.2008.2003014.
[6] V. I. Kumar and S. Kapat, "Unified Digital Current Mode Control Tuning With Near Optimal Recovery in a CCM Buck Converter," in IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8461-8470, Dec. 2016, doi: 10.1109/TPEL.2016.2519685.
[7] G. Feng, E. Meyer and Y. Liu, "A New Digital Control Algorithm to Achieve Optimal Dynamic Performance in DC-to-DC Converters," in IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1489-1498, July 2007, doi: 10.1109/TPEL.2007.900605.
[8] L. Jia and Y. Liu, "Low Cost Microcontroller Based Implementation of Robust Voltage Based Capacitor Charge Balance Control Algorithm," in IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 869-879, May 2013, doi: 10.1109/TII.2012.2219875.
[9] A. Radić, Z. Lukić, A. Prodić and R. H. de Nie, "Minimum-Deviation Digital Controller IC for DC–DC Switch-Mode Power Supplies," in IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4281-4298, Sept. 2013, doi: 10.1109/TPEL.2012.2227503.
[10] L. Corradini, P. Mattavelli, W. Stefanutti and S. Saggini, "Simplified Model Reference-Based Autotuningfor Digitally Controlled SMPS," in IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1956-1963, July 2008, doi: 10.1109/TPEL.2008.925419.
[11] Y. Chu and L. Chang-Chien, "Digitally Controlled Low-Dropout Regulator with Fast-Transient and Autotuning Algorithms," in IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4308-4317, Sept. 2013, doi: 10.1109/TPEL.2012.2230025.
[12] C. Shi, B. C. Walker, E. Zeisel, B. Hu and G. H. McAllister, "A Highly Integrated Power Management IC for Advanced Mobile Applications," in IEEE Journal of Solid-State Circuits, vol. 42, no. 8, pp. 1723-1731, Aug. 2007, doi: 10.1109/JSSC.2007.900284.
[13] M. Hammes, C. Kranz, D. Seippel, J. Kissing and A. Leyk, "Evolution on SoC Integration: GSM Baseband-Radio in 0.13 $mu{hbox {m}}$ CMOS Extended by Fully Integrated Power Management Unit," in IEEE Journal of Solid-State Circuits, vol. 43, no. 1, pp. 236-245, Jan. 2008, doi: 10.1109/JSSC.2007.909344.
[14] P. Luo, S. Zhen, J. Wang, K. Yang, P. Liao and X. Zhu, "Digital Assistant Power Integrated Technologies for PMU in Scaling CMOS Process," in IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3798-3807, July 2014, doi: 10.1109/TPEL.2013.2279267.
[15] Y. Chu, L. Chang-Chien, N. Sertac Artan, D. Czarkowski, C. Chang et al., "On-Chip AC–DC Multiple-Power-Supplies Module for Transcutaneously Powered Wearable Medical Devices," in IEEE Transactions on Industry Applications, vol. 54, no. 2, pp. 1724-1736, March-April 2018, doi: 10.1109/TIA.2017.2767549.
[16] Texas Instruments, “TPS65218 Power Management for ARM® Cortex™-A8/A9 SOCs” 2018 [Online]. Available: http://www.ti.com/lit/ds/symlink/tps65218.pdf
[17] D. Ma, W. Ki, C. Tsui and P. K. T. Mok, "Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode," in IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp. 89-100, Jan. 2003, doi: 10.1109/JSSC.2002.806279.
[18] D. Ma, W. Ki and C. Tsui, "A pseudo-CCM/DCM SIMO switching converter with freewheel switching," in IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 1007-1014, June 2003, doi: 10.1109/JSSC.2003.811976.
[19] D. Trevisan, P. Mattavelli and P. Tenti, "Digital Control of Single-Inductor Multiple-Output Step-Down DC–DC Converters in CCM," in IEEE Transactions on Industrial Electronics, vol. 55, no. 9, pp. 3476-3483, Sept. 2008, doi: 10.1109/TIE.2008.921234.
[20] K. Lin, C. Huang, D. Chen and K. Liu, "Modeling and design of feedback loops for a voltage-mode single-inductor dual-output buck converter," 2008 IEEE Power Electronics Specialists Conference, Rhodes, 2008, pp. 3389-3395. doi: 10.1109/PESC.2008.4592479
[21] W. Xu, Y. Li, X. Gong, Z. Hong and D. Killat, "A Dual-Mode Single-Inductor Dual-Output Switching Converter With Small Ripple," in IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 614-623, March 2010, doi: 10.1109/TPEL.2009.2033927.
[22] H. Le, C. Chae, K. Lee, S. Wang, G. Cho and G. Cho, "A Single-Inductor Switching DC–DC Converter With Five Outputs and Ordered Power-Distributive Control," in IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2706-2714, Dec. 2007, doi: 10.1109/JSSC.2007.908767.
[23] C. Chen and A. Fayed, "A Low-Power Dual-Frequency SIMO Buck Converter Topology With Fully-Integrated Outputs and Fast Dynamic Operation in 45 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 50, no. 9, pp. 2161-2173, Sept. 2015, doi: 10.1109/JSSC.2015.2422782.
[24] W. Chen, Y. Su, T. Huang, T. Tsai, R. Peng, K. Lin, K. Chen et al., "Single-Inductor Quad-Output Switching Converter With Priority-Scheduled Program for Fast Transient Response and Unlimited Load Range in 40 nm CMOS Technology," in IEEE Journal of Solid-State Circuits, vol. 50, no. 7, pp. 1525-1539, July 2015, doi: 10.1109/JSSC.2015.2422071.
[25] B. Chen and L. Chang-Chien, "Digitally controlled low cross-regulation single-inductor dual-output (SIDO) buck converter," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, 2015, pp. 2497-2500, doi: 10.1109/ISCAS.2015.7169192.
[26] B. Wang, V. R. K. Kanamarlapudi, L. Xian, X. Peng, K. T. Tan and P. L. So, "Model Predictive Voltage Control for Single-Inductor Multiple-Output DC–DC Converter With Reduced Cross Regulation," in IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4187-4197, July 2016, doi: 10.1109/TIE.2016.2532846.
[27] C. Tsai, C. Yang and J. Wu, "A Digitally Controlled Switching Regulator With Reduced Conductive EMI Spectra," in IEEE Transactions on Industrial Electronics, vol. 60, no. 9, pp. 3938-3947, Sept. 2013, doi: 10.1109/TIE.2012.2207650.
[28] M. Kumar and R. Gupta, "Time-Domain Analysis of Sampling Effect in DPWM of DC–DC Converters," in IEEE Transactions on Industrial Electronics, vol. 62, no. 11, pp. 6915-6924, Nov. 2015, doi: 10.1109/TIE.2015.2437352.
[29] W. Chen, C. Chen, C. Yao and R. Yang, "A Fast-Transient Wide-Voltage-Range Digital-Controlled Buck Converter With Cycle-Controlled DPWM," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 17-25, Jan. 2016, doi: 10.1109/TVLSI.2015.2405548.
[30] Y. Lee, W. Qu, S. Singh, D. Kim, K. Kim et al., "A 200-mA Digital Low Drop-Out Regulator With Coarse-Fine Dual Loop in Mobile Application Processor," in IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp. 64-76, Jan. 2017, doi: 10.1109/JSSC.2016.2614308.
[31] S. Kapat and V. I. Kumar, "Single-Inductor Multioutput-Level Buck Converter for Reducing Voltage-Transition Time and Energy Overheads in Low Power DVS-Enabled Systems," in IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2254-2266, March 2018, doi: 10.1109/TPEL.2017.2691469.
[32] Q. Huang, C. Zhan and J. Burm, "A 30-MHz Voltage-Mode Buck Converter Using Delay-Line-Based PWM Control," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 11, pp. 1659-1663, Nov. 2018, doi: 10.1109/TCSII.2017.2764048.
[33] K. Wu, B. Hwang and C. C. Chen, "Synchronous Double-Pumping Technique for Integrated Current-Mode PWM DC–DC Converters Demand on Fast-Transient Response," in IEEE Transactions on Power Electronics, vol. 32, no. 1, pp. 849-865, Jan. 2017, doi: 10.1109/TPEL.2016.2537214.
[34] J. Chang, H. Oh, Y. Jun and B. Kong, "Fast Output Voltage-Regulated PWM Buck Converter With an Adaptive Ramp Amplitude Control," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 10, pp. 712-716, Oct. 2013, doi: 10.1109/TCSII.2013.2277986.
[35] J. Suh, J. Seok and B. Kong, "A Fast Response PWM Buck Converter With Active Ramp Tracking Control in a Load Transient Period," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 3, pp. 467-471, March 2019, doi: 10.1109/TCSII.2018.2865643.
[36] Y. Lee, S. Huang, S. Wang and K. Chen, "Fast Transient (FT) Technique With Adaptive Phase Margin (APM) for Current Mode DC-DC Buck Converters," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 10, pp. 1781-1793, Oct. 2012. doi: 10.1109/TVLSI.2011.2163093
[37] J. Chen, B. Hwang, Y. Jhang, Y. Hwang, C. Yu, "A new fast-response buck converter using accelerated pulse-width-modulation techniques, " Int. Journal of Circuit Theory and Applications, vol. 41, no. 8, pp. 854-865, Aug. 2013.
[38] K. Javed, J. Yeo, J. Lee, J. Roh, "Fast-transient DC-DC converter using a high-performance error amplifier with a rapid output-voltage control technique, " Int. Journal of Circuit Theory and Applications, vol. 45, pp. 1431–1438. 2017
[39] S. Chien, T. Hung, S. Huang and T. Kuo, "A Monolithic Capacitor-Current-Controlled Hysteretic Buck Converter With Transient-Optimized Feedback Circuit," in IEEE Journal of Solid-State Circuits, vol. 50, no. 11, pp. 2524-2532, Nov. 2015. doi: 10.1109/JSSC.2015.2464720
[40] Y. Huang, T. Kuo, S. Huang and K. Fang, "A Four-Phase Buck Converter With Capacitor-Current-Sensor Calibration for Load-Transient-Response Optimization That Reduces Undershoot/Overshoot and Shortens Settling Time to Near Their Theoretical Limits," in IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 552-568, Feb. 2018. doi: 10.1109/JSSC.2017.2768412
[41] L. Corradini, A. Costabeber, P. Mattavelli and S. Saggini, "Parameter-Independent Time-Optimal Digital Control for Point-of-Load Converters," in IEEE Transactions on Power Electronics, vol. 24, no. 10, pp. 2235-2248, Oct. 2009, doi: 10.1109/TPEL.2009.2022397.
[42] W. Fang, X. Liu and Y. Liu, "A New Digital Control Algorithm for Dual-Transistor Forward Converter," in IEEE Transactions on Industrial Informatics, vol. 9, no. 4, pp. 2074-2081, Nov. 2013, doi: 10.1109/TII.2012.2234471.
[43] Y. Qiu, X. Chen, C. Zhong and C. Qi, "Limiting Integral Loop Digital Control for DC–DC Converters Subject to Changes in Load Current and Source Voltage," in IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1307-1316, May 2014, doi: 10.1109/TII.2014.2310632.
[44] L. Jia and Y. Liu, "Voltage-Based Charge Balance Controller Suitable for Both Digital and Analog Implementations," in IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 930-944, Feb. 2013, doi: 10.1109/TPEL.2012.2203340.
[45] H. Chen and L. Chang-Chien, "Charge Balance Control for Improving the Load Transient Response on Dynamic Voltage Scaling(DVS) Buck Converter," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, 2018, pp. 1-5, doi: 10.1109/ISCAS.2018.8351032.
[46] P. Zumel, C. Fernandez, M. Sanz, A. Lazaro and A. Barrado, "Step-By-Step Design of an FPGA-Based Digital Compensator for DC/DC Converters Oriented to an Introductory Course," in IEEE Transactions on Education, vol. 54, no. 4, pp. 599-609, Nov. 2011, doi: 10.1109/TE.2010.2100397.
[47] D. K. W. Li, Z. Gong, M. Rose, H. J. Bergveld and O. Trescases, "Improved dynamics in DC-DC converters for IoT applications with repetitive load profiles using self-calibrated preemptive current control," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, 2017, pp. 3352-3356, doi: 10.1109/APEC.2017.7931177.
[48] L. Jia, D. Wang, Y. Liu and P. C. Sen, "A novel analog implementation of capacitor charge balance controller with a practical extreme voltage detector," 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, 2011, pp. 245-252, doi: 10.1109/APEC.2011.5744604.
[49] S. K. Mishra, "Design-Oriented Analysis of Modern Active Droop-Controlled Power Supplies," in IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3704-3708, Sept. 2009, doi: 10.1109/TIE.2009.2025289.
[50] K. Yao, M. Xu, Y. Meng and F. C. Lee, "Design considerations for VRM transient response based on the output impedance," in IEEE Transactions on Power Electronics, vol. 18, no. 6, pp. 1270-1277, Nov. 2003, doi: 10.1109/TPEL.2003.818824.
[51] C. Chen, D. Chen, C. Huang, M. Lee and E. K. Tseng, "Modeling and Design Considerations of a Novel High-Gain Peak Current Control Scheme to Achieve Adaptive Voltage Positioning (AVP) for DC Power Converters," in IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2942-2950, Dec. 2009, doi: 10.1109/TPEL.2009.2021604.
[52] M. Lee, D. Chen, K. Huang, C. Liu and B. Tai, "Modeling and Design for a Novel Adaptive Voltage Positioning (AVP) Scheme for Multiphase VRMs," in IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1733-1742, July 2008, doi: 10.1109/TPEL.2008.924822.
[53] J. A. Abu Qahouq and V. P. Arikatla, "Power Converter With Digital Sensorless Adaptive Voltage Positioning Control Scheme," in IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 4105-4116, Sept. 2011, doi: 10.1109/TIE.2010.2098366.
[54] J. Sun, J. Zhou, M. Xu and F. C. Lee, "A Novel Input-Side Current Sensing Method to Achieve AVP for Future VRs," in IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1235-1242, Sept. 2006, doi: 10.1109/TPEL.2006.880347.
[55] Y. Lin, C. Chen, D. Chen and B. Wang, "A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters," in IEEE Transactions on Power Electronics, vol. 27, no. 10, pp. 4301-4310, Oct. 2012, doi: 10.1109/TPEL.2012.2191799.
[56] S. Pan and P. K. Jain, "A New Digital Adaptive Voltage Positioning Technique with Dynamically Varying Voltage and Current References," in IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2612-2624, Nov. 2009, doi: 10.1109/TPEL.2009.2030807.
[57] A. V. Peterchev and S. R. Sanders, "Load-Line Regulation With Estimated Load-Current Feedforward: Application to Microprocessor Voltage Regulators," in IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1704-1717, Nov. 2006, doi: 10.1109/TPEL.2006.882932.
[58] G. Eirea and S. R. Sanders, "Adaptive Output Current FeedforwardControl in VR Applications," in IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1880-1887, July 2008, doi: 10.1109/TPEL.2008.925199.
[59] H. Huang, C. Hsieh, J. Liao and K. Chen, "Adaptive Droop Resistance Technique for Adaptive Voltage Positioning in Boost DC–DC Converters," in IEEE Transactions on Power Electronics, vol. 26, no. 7, pp. 1920-1932, July 2011, doi: 10.1109/TPEL.2010.2095508.
[60] X. Duan and A. Q. Huang, "Current-mode variable-frequency control architecture for high-current low-voltage DC–DC converters [Letters]," in IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 1133-1137, July 2006, doi: 10.1109/TPEL.2006.878031.
[61] S. Saggini, M. Ghioni and A. Geraci, "An innovative digital control architecture for low-Voltage, high-current DC-DC converters with tight voltage regulation," in IEEE Transactions on Power Electronics, vol. 19, no. 1, pp. 210-218, Jan. 2004, doi: 10.1109/TPEL.2003.820543.
[62] K. Lee, F. C. Lee, J. Wei and M. Xu, "Analysis and Design of Adaptive Bus Voltage Positioning System for Two-Stage Voltage Regulators," in IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2735-2745, Dec. 2009, doi: 10.1109/TPEL.2009.2030806.
[63] W. Chen, J. Chen, T. Liang, S. Hsiao, J. Huang and W. Ting, "Improved transient response using high-frequency feedback control circuit of the constant current ripple constant on-time with native adaptive voltage positioning design for voltage regulators," in IET Power Electronics, vol. 6, no. 9, pp. 1948-1955, November 2013, doi: 10.1049/iet-pel.2013.0020.
[64] J. Su and C. Liu, "Gain scheduling control scheme for improved transient response of DC/DC converters," in IET Power Electronics, vol. 5, no. 6, pp. 678-692, July 2012, doi: 10.1049/iet-pel.2010.0313.
[65] R. B. Ridley, B. H. Cho and F. C. Y. Lee, "Analysis and interpretation of loop gains of multiloop-controlled switching regulators (power supply circuits)," in IEEE Transactions on Power Electronics, vol. 3, no. 4, pp. 489-498, Oct. 1988, doi: 10.1109/63.17971.
[66] K. Cheng, S. Tian, F. Yu, F. C. Lee and P. Mattavelli, "Digital Hybrid Ripple-Based Constant On-Time Control for Voltage Regulator Modules," in IEEE Transactions on Power Electronics, vol. 29, no. 6, pp. 3132-3144, June 2014, doi: 10.1109/TPEL.2013.2272015.
[67] R. Redl and J. Sun, "Ripple-Based Control of Switching Regulators—An Overview," in IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2669-2680, Dec. 2009, doi: 10.1109/TPEL.2009.2032657.
[68] C. Tsai, B. Chen and H. Li, "Switching Frequency Stabilization Techniques for Adaptive On-Time Controlled Buck Converter With Adaptive Voltage Positioning Mechanism," in IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 443-451, Jan. 2016, doi: 10.1109/TPEL.2015.2405339.
[69] T. Qian and W. Wu, "Analysis of the ramp compensation approaches to improve stability for buck converters with constant on-time control," in IET Power Electronics, vol. 5, no. 2, pp. 196-204, Feb. 2012, doi: 10.1049/iet-pel.2010.0374.
[70] W. Chen, J. Chen, T. Liang, J. Huang, L. Wei and W. Ting, "Implementing dynamic quick response with high-frequency feedback control of the deformable constant on-time control for Buck converter on-chip," in IET Power Electronics, vol. 6, no. 2, pp. 383-391, Feb. 2013, doi: 10.1049/iet-pel.2012.0522.
[71] Z. Zhao, S. M. Ahsanuzzaman and A. Prodic, "ESR Zero Estimation and Auto-compensation in Digitally Controlled Buck Converters," 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, 2009, pp. 247-251, doi: 10.1109/APEC.2009.4802663.
[72] Z. Lukic, Z. Zhao, S. M. Ahsanuzzaman and A. Prodic, "Self-Tuning Digital Current Estimator for Low-Power Switching Converters," 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, Austin, TX, 2008, pp. 529-534, doi: 10.1109/APEC.2008.4522772.
[73] Z. Lukić, S. M. Ahsanuzzaman, Z. Zhao and A. Prodić, "Sensorless Self-Tuning Digital CPM Controller With Multiple Parameter Estimation and Thermal Stress Equalization," in IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3948-3963, Dec. 2011, doi: 10.1109/TPEL.2011.2131684.
[74] S. B. Nasir and A. Raychowdhury, "On limit cycle oscillations in discrete-time digital linear regulators," 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, 2015, pp. 371-376, doi: 10.1109/APEC.2015.7104377.
[75] M. Huang, Y. Lu, S. Sin, S. U, R. P. Martins and W. Ki, "Limit Cycle Oscillation Reduction for Digital Low Dropout Regulators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 9, pp. 903-907, Sept. 2016, doi: 10.1109/TCSII.2016.2534778.
[76] M. Cheah, D. Mandal, B. Bakkaloglu and S. Kiaei, "A 100-mA, 99.11% Current Efficiency, 2-mVpp Ripple Digitally Controlled LDO With Active Ripple Suppression," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 2, pp. 696-704, Feb. 2017, doi: 10.1109/TVLSI.2016.2596708.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw