進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0607201816204000
論文名稱(中文) 金屬氧化物電洞注入層於量子點發光二極體之研製
論文名稱(英文) Investigation and Fabrication of Metal Oxide Hole Injection Layer in Quantum Dot Light Emitting Diode
校院名稱 成功大學
系所名稱(中) 微電子工程研究所
系所名稱(英) Institute of Microelectronics
學年度 106
學期 2
出版年 107
研究生(中文) 張雅柔
研究生(英文) Ya-Rou Chang
學號 Q16051136
學位類別 碩士
語文別 英文
論文頁數 59頁
口試委員 指導教授-蘇炎坤
口試委員-吳孟奇
口試委員-莊賦祥
口試委員-尤信介
口試委員-楊智強
中文關鍵字 全無機  量子點發光二極體  低成本  溶膠-凝膠法  金屬氧化物 
英文關鍵字 all-inorganic  quantum dot light emitting diodes  low-cost  sol-gel method  metal oxide 
學科別分類
中文摘要 量子點因其出色的發光特性成為下一代發光材料的有利競爭者。本篇論文中研製三種膠體,以旋轉塗佈法作為電洞傳輸層薄膜,構建出高亮度以及色光純度的全無機紅光量子點發光二極體。本文分為下列三個部分:
第一個部分通過氧化鎳前驅物溶液濃度的調變控制元件性質,元件發光層為硒化鎘/硫化鋅核殼型量子點以及電子傳輸層為氧化鋅奈米粒子,分別獨立塗佈於氧化銦錫透明基板,製造出氧化鎳全無機量子點發光二極體。適當的濃度(2M)使得元件具有較高的厚度以及更低的表面粗糙度。最高亮度3071 cd/m^2,電流效率0.3 cd/A。
第二部分使用醋酸銅摻雜到氧化鎳前驅物內作為電洞注入層,製成全無機量子點發光二極體。實驗結果發現當Cu:Ni摻雜濃度由0.5%→1.5%時,亮度可以從3155 cd/m^2到10892 cd/m^2,最大電流效率亦可從0.867 cd/A到0.965 cd。表示於低電壓操作環境不形成短路通道的前提下,適度的摻雜能有效提升元件效率。
而本文的第三部分中,驗證了第二部份製備的高性能元件擁有較高的氧化銅成分導致電洞傳輸層粗糙度的變化。證實混合材料可將高電洞遷移率的氧化銅與氧化鎳結合,進而改善載子平衡。並成功使用醋酸銅製備氧化銅前驅物,取代氧化鎳為電洞傳輸層。實驗結果顯示以氧化銅作為電洞傳輸層的元件與沒有摻雜的氧化鎳元件相較,擁有更小的驅動電壓,最高亮度17030 cd/m^2以及最大電流效率1.67 cd/A。
英文摘要 Quantum dots are a good contender for the next generation of luminescent materials because of their excellent luminescent properties. In this paper, three kinds of colloids are developed and metal oxide is formed by spin coating method as the hole transport layer film. To construct an all-inorganic red light quantum dot light-emitting diode with exceptional brightness and color purity. This thesis is divided into three parts.
The first part controls the properties of the device by adjusting the concentration of the nickel oxide precursor solution. The device light emitting layer is a cadmium selenide/zinc sulfide core-shell type quantum dot and the electron transport layer is a zinc oxide nanoparticle independently coated on indium tin oxide transparent substrate, to produce a nickel oxide fully inorganic quantum dot light-emitting diode. The appropriate concentration (2M) allows the device to have a higher thickness and lower surface roughness, a maximum brightness of 3071 cd/m^2, and a current efficiency of 0.3 cd /A.
The second part uses copper acetate doped into the nickel oxide precursor as a hole injection layer to make a fully inorganic quantum dot light-emitting diode. The experimental results show that when the doping concentration of Cu:Ni is from 0.5% to 1.5%, The brightness is from 3155 cd/m^2 to 10892 cd/m^2. The maximum current efficiency is also from 0.867 cd/A to the last 0.965 cd. The results show that under the premise that the low voltage operation environment does not form a short circuit channel, moderate doping can effectively improve the device efficiency.
In the third part of thesis, it is verified that the high-performance components prepared in the second part of the paper have a higher copper oxide composition and cause the change in the roughness of the hole transport layer. It was confirmed that the mixed material can combine copper oxide and nickel oxide with high hole mobility to improve carrier balance. The successful use of copper acetate to prepare copper oxide precursor, replacing nickel oxide as a hole transport layer. The experimental results show that the device using copper oxide as a hole transport layer has a smaller driving voltage, a maximum brightness of 17030 cd/m^2, and a maximum current efficiency of 1.67 cd/A compared with the undoped nickel oxide element.
論文目次 Abstract(Chinese) I
Abstract II
Acknowledgement IV
Contents V
Table Captions VIII
Figure Captions IX
Chapter 1 Introduction 1
1.1 Introduction of electrical operating QD-LEDs 1
(I) Tunable and bright colours : 1
(II) Bright emission : 1
1.2 Four categories of QD-LEDs 3
Type I : polymer CTLs 3
Type II : Organic small molecule CTLs 3
Type III: Inorganic CTLs 3
Type IV : Hybrid organic-inorganic CTLs 4
1.3 Metal oxide semiconductor 4
1.4 Hole injection layer by Sol-gel method 5
1.5 Motivation 7
Chapter 2 Experiment process and measurement 12
2.1 Materials in the experiment 12
2.1.1 Sol-Gel hole transport layer 12
2.1.2 Emission material 12
2.1.3 Electron transporting layer 13
2.2 Experiment Process 13
2.3 Measurement method 14
Chapter 3 QD-LEDs based on NiOx 18
3.1 Thickness of NiOx HIL/HTL in all-organic QD-LEDs 18
3.1.1 Literature Review 18
3.1.2 Device Fabrication 18
3.1.3 Result and Discussion 19
3.1.4 Summary 20
3.2 Copper Doping of NiOx HTL in all-inorganic QD-LEDs 29
3.2.1 Literature Review 29
3.2.2 Device Fabrication 30
3.2.3 Result and Discussion 31
3.2.4 Summary 31
Chapter 4 QD-LEDs based on CuO 38
4.1 Literature review 38
4.2 Device fabrication 38
4.3 Result and Discussion 39
4.4 Summary 40
Chapter 5 Conclusion and Future Prospect 50
5.1 Conclusion 50
5.2 Future Prospect 51
5.2.1 Optimize thickness of NiOx HTL 51
5.2.2 Simplify the process 51
Reference 55
參考文獻 [1] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, "Nearly 100% internal phosphorescence efficiency in an organic light-emitting device," J. Appl. Phys., vol. 90, pp. 5048-5051, 2001.
[2] P. O. Anikeeva, "Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor," Chem. Phys. Lett., vol. 424, pp. 120-125, 2006.
[3] P. F. Smet, I. Moreels, Z. Hens, and D. Poelman, "Luminescence in Sulfides: A Rich History and a Bright Future," Materials, vol. 3, no. 4, pp. 2834-2883, 2010.
[4] M. A. Baldo, "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, vol. 395, pp. 151-154, 1998.
[5] V. L. Colvin, M. C. Schlamp, and A. P. Alivisatos, "Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer," Nature, vol. 370, p. 354, 1994.
[6] M. W. Allen, "Bulk transport measurements in ZnO: the effect of surface electron layers," Phys. Rev. B, vol. 81, p. 075211, 2010.
[7] B. Carlson, K. Leschkies, E. S. Aydil, and X. Y. Zhu, "Valence band alignment at cadmium selenide quantum dot and zinc oxide (10110) interfaces," J. Phys. Chem. C, vol. 112, pp. 8419-8423, 2008.
[8] F. Todescato, I. Fortunati, A. Minotto, R. Signorini, J. J. Jasieniak, and R. Bozio, "Engineering of Semiconductor Nanocrystals for Light Emitting Applications," Materials, vol. 9, no. 8, p. 672, 2016.
[9] Y. Cheng, S. Arinze Ebuka, N. Palmquist, and M. Thon Susanna, "Advancing colloidal quantum dot photovoltaic technology," in Nanophotonics vol. 5, ed, p. 31, 2016.
[10] K. S. Cho, "High-performance crosslinked colloidal quantum-dot light-emitting diodes," Nature Photon., vol. 3, pp. 341-345, 2009.
[11] S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature, vol. 420, pp. 800-803, 2002.
[12] S. R. Forrest, D. D. C. Bradley, and M. E. Thompson, "Measuring the efficiency of organic light-emitting devices," Adv. Mater., vol. 15, pp. 1043-1048, 2003.
[13] B. Xie, R. Hu, and X. Luo, "Quantum Dots-Converted Light-Emitting Diodes Packaging for Lighting and Display: Status and Perspectives," Journal of Electronic Packaging, vol. 138, no. 2, pp. 020803-020803-13, 2016.
[14] J. Jasieniak, M. Califano, and S. E. Watkins, "Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals," Acs Nano, vol. 5, pp. 5888-5902, 2011.
[15] S. N. Inamdar, P. P. Ingole, and S. K. Haram, "Determination of band structure parameters and the quasi-particle gap of CdSe quantum dots by cyclic voltammetry," Chem Phys Chem, vol. 9, pp. 2574-2579, 2008.
[16] P. P. Jha and P. Guyot-Sionnest, "Photoluminescence switching of charged quantum dot films," J. Phys. Chem. C, vol. 111, pp. 15440-15445, 2007.
[17] I. Schnitzer, E. Yablonovitch, C. Caneau, T. Gmitter, and A. Scherer, "30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes," Applied Physics Letters, vol. 63, no. 16, pp. 2174-2176, 1993.
[18] M. A. Baldo et al., "Highly efficient phosphorescent emission from organic electroluminescent devices," Nature, vol. 395, p. 151, 1998.
[19] S. Jin, N. Song, and T. Lian, "Suppressed blinking dynamics of single QDs on ITO," Acs Nano, vol. 4, pp. 1545-1552, 2010.
[20] T. H. Kim, "Full-colour quantum dot displays fabricated by transfer printing," Nature Photon., vol. 5, pp. 176-182, 2011.
[21] S. Li, M. L. Steigerwald, and L. E. Brus, "Surface states in the photoionization of high-quality CdSe core/shell nanocrystals," Acs Nano, vol. 3, pp. 1267-1273, 2009.
[22] H. Zamani Siboni, B. Sadeghimakki, S. Sivoththaman, and H. Aziz, "Very High Brightness Quantum Dot Light-Emitting Devices via Enhanced Energy Transfer from a Phosphorescent Sensitizer," ACS Applied Materials & Interfaces, vol. 7, no. 46, pp. 25828-25834, 2015.
[23] B. Mahler, "Towards non-blinking colloidal quantum dots," Nature Mater., vol. 7, pp. 659-664, 2008.
[24] C. R. Kagan, C. B. Murray, and M. G. Bawendi, "Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids," Phys. Rev. B, vol. 54, pp. 8633-8643, 1996.
[25] X. Wu and E. K. L. Yeow, "Charge-transfer processes in single CdSe/ZnS quantum dots with p-type NiO nanoparticles," Chem. Commun., vol. 46, pp. 4390-4392, 2010.
[26] K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, "Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles," Proc. Natl Acad. Sci. Usa, vol. 108, pp. 29-34, 2011.
[27] B. S. Mashford et al., "High-efficiency quantum-dot light-emitting devices with enhanced charge injection," Nature Photonics, vol. 7, no. 5, pp. 407-412, 2013.
[28] M. K. Choi, J. Yang, T. Hyeon, and D.-H. Kim, "Flexible quantum dot light-emitting diodes for next-generation displays," npj Flexible Electronics, vol. 2, no. 1, p. 10, 2018.
[29] L. Qian, "Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages," Nano Today, vol. 5, pp. 384-389, // 2010.
[30] L. Qian, Y. Zheng, J. Xue, and P. H. Holloway, "Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures," Nature Photon., vol. 5, pp. 543-548, 2011.
[31] J. H. Lai, S. H. Su, H. H. Chen, J. C. A. Huang, and C. L. Wu, "Stabilization of ZnO polar plane with charged surface nanodefects," Phys. Rev. B, vol. 82, p. 155406, 2010.
[32] V. Wood, "Selection of metal oxide charge transport layers for colloidal quantum dot LEDs," Acs Nano, vol. 3, pp. 3581-3586, 2009.
[33] J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, "Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers," (in English), Nature Photonics, vol. 2, no. 4, pp. 247-250, 2008.
[34] Y. Y. Tay, T. T. Tan, M. H. Liang, F. Boey, and S. Li, "Specific defects, surface band bending and characteristic green emissions of ZnO," Phys. Chem. Chem. Phys., vol. 12, pp. 6008-6013, 2010.
[35] A. Van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, "Influence of adsorbed oxygen on the emission properties of nanocrystalline ZnO particles," J. Phys. Chem. B, vol. 104, pp. 4355-4360, 2000.
[36] E. M. Rabinovich et al., "Sol-gel preparation of transparent silica glass," Journal of Non-Crystalline Solids, vol. 63, no. 1-2, pp. 155-161, 1984.
[37] E. M. Rabinovich, "Sol Gel Processing—General Principles," in Sol-Gel Optics: Springer, pp. 1-37, 1994.
[38] V. J. Fratello, E. M. Rabinovich, and J. Shmulovich, "Sol gel method for forming thin luminescent films," ed: Google Patents, 1990.
[39] S. Sakka, Handbook of sol-gel science and technology. 1. Sol-gel processing. Springer Science & Business Media, 2005.
[40] J. Livage, M. Henry, and C. Sanchez, "Sol-gel chemistry of transition metal oxides," Progress in solid state chemistry, vol. 18, no. 4, pp. 259-341, 1988.
[41] J. D. Wright and N. A. Sommerdijk, Sol-gel materials: chemistry and applications. CRC press, 2014.
[42] D. Li, "Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods," Appl. Phys. Lett., vol. 85, pp. 1601-1603, 2004.
[43] H. J. Kim and J. H. Lee, "Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview," (in English), Sensors and Actuators B-Chemical, Review vol. 192, pp. 607-627, 2014.
[44] B. Mashford, T.-L. Nguyen, G. Wilson, and P. Mulvaney, "All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing," Journal of materials chemistry, vol. 20, no. 1, pp. 167-172, 2010.
[45] S. Y. Liu, R. Liu, Y. Chen, S. H. Ho, J. H. Kim, and F. So, "Nickel Oxide Hole Injection/Transport Layers for Efficient Solution-Processed Organic Light-Emitting Diodes," (in English), Chemistry of Materials, vol. 26, no. 15, pp. 4528-4534, 2014.
[46] H. M. Kim, J. Kim, and J. Jang, "Quantum-dot light-emitting diodes with a perfluorinated ionomer-doped copper-nickel oxide hole transporting layer," Nanoscale, vol. 10, no. 15, pp. 7281-7290, 2018.
[47] X. L. Zhang, H. T. Dai, J. L. Zhao, C. Li, S. G. Wang, and X. W. Sun, "Effects of the thickness of NiO hole transport layer on the performance of all-inorganic quantum dot light emitting diode," Thin Solid Films, vol. 567, no. Supplement C, pp. 72-76, 2014.
[48] J.-M. Caruge, J. E. Halpert, V. Bulović, and M. G. Bawendi, "NiO as an Inorganic Hole-Transporting Layer in Quantum-Dot Light-Emitting Devices," Nano Letters, vol. 6, no. 12, pp. 2991-2994, 2006.
[49] H. T. Nguyen, N. D. Nguyen, and S. Lee, "Application of solution-processed metal oxide layers as charge transport layers for CdSe/ZnS quantum-dot LEDs," Nanotechnology, vol. 24, no. 11, p. 115201, Art. no. 115201, 2013.
[50] J. M. Caruge, J. E. Halpert, V. Bulovic, and M. G. Bawendi, "NiO as an inorganic hole-transporting layer in quantum-dot light-emitting devices," Nano Lett, vol. 6, no. 12, pp. 2991-4, 2006.
[51] J. H. Lia, Y. L. Shao, X. C. Chen, H. Z. Wang, Y. G. Li, and Q. H. Zhang, "All-inorganic quantum-dot light-emitting-diodes with vertical nickel oxide nanosheets as hole transport layer," Progress in Natural Science-Materials International, vol. 26, no. 5, pp. 503-509, 2016.
[52] W. Ji, S. Liu, H. Zhang, R. Wang, W. Xie, and H. Zhang, "Ultrasonic Spray Processed, Highly Efficient All-Inorganic Quantum-Dot Light-Emitting Diodes," ACS Photonics, vol. 4, no. 5, pp. 1271-1278, 2017/05/17 2017.
[53] F. Cao et al., "High-Efficiency and Stable Quantum Dot Light-Emitting Diodes Enabled by a Solution-Processed Metal-Doped Nickel Oxide Hole Injection Interfacial Layer," Advanced Functional Materials, vol. 27, no. 42, Nov 2017, Art. no. 1704278.
[54] X. Dai, Y. Deng, X. Peng, and Y. Jin, "Quantum‐Dot Light‐Emitting Diodes for Large‐Area Displays: Towards the Dawn of Commercialization," Advanced materials, vol. 29, no. 14, 2017.
[55] V. Wood, M. J. Panzer, J. E. Halpert, J. M. Caruge, M. G. Bawendi, and V. Bulović, "Selection of Metal Oxide Charge Transport Layers for Colloidal Quantum Dot LEDs," ACS Nano, vol. 3, no. 11, pp. 3581-3586, 2009.
[56] T. Ding et al., "Colloidal quantum-dot LEDs with a solution-processed copper oxide (CuO) hole injection layer," Organic Electronics, vol. 26, pp. 245-250, 2015.
[57] M.-Y. Lin et al., "Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells," Organic Electronics, vol. 11, no. 11, pp. 1828-1834, 2010.
[58] N. D. Hoa, S. Y. An, N. Q. Dung, N. Van Quy, and D. Kim, "Synthesis of p-type semiconducting cupric oxide thin films and their application to hydrogen detection," Sensors and Actuators B: Chemical, vol. 146, no. 1, pp. 239-244, 2010.
[59] C.-Y. Chiang, Y. Shin, and S. Ehrman, "Dopant effects on conductivity in copper oxide photoelectrochemical cells," Applied Energy, vol. 164, pp. 1039-1042, 2016.
[60] H. M. Kim, J. Kim, S. Y. Cho, and J. Jang, "Solution-Processed Metal-Oxide p-n Charge Generation Junction for High-Performance Inverted Quantum-Dot Light-Emitting Diodes," Acs Applied Materials & Interfaces, vol. 9, no. 44, pp. 38678-38686, 2017.
[61] Y. Zhang, "Glycine-assisted fabrication of NiO-based quantum dots light-emitting diodes," Journal of Luminescence, vol. 192, no. Supplement C, pp. 1015-1019, 2017.
[62] X. L. Dai et al., "Solution-processed, high-performance light-emitting diodes based on quantum dots," Nature, vol. 515, no. 7525, pp. 96-99, 2014.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw