進階搜尋


下載電子全文  
系統識別號 U0026-0607201716085800
論文名稱(中文) 製備相同孔隙度之不同勁度的聚丙烯醯胺膠體來研究基材勁度對誘導脂肪幹細胞的影響
論文名稱(英文) The Influence of PAA Substratum in Different with Stiffness with Identical Pore Size on the Behaviors of Adipose-Derived Stem Cells
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 朱柏翰
研究生(英文) Po-Han Chu
學號 P86031236
學位類別 碩士
語文別 中文
論文頁數 50頁
口試委員 指導教授-葉明龍
口試委員-邱文泰
口試委員-陳嘉炘
中文關鍵字 硬度  孔洞大小  脂肪誘導幹細胞  分化  增生  爬行 
英文關鍵字 Stiffness  Pore size  Adipose-derived stem cells  Differentiation  Proliferation  Migration 
學科別分類
中文摘要 先前的研究有提到細胞外基質會藉由化學刺激及物理刺激的方式來調控細胞的行為,如細胞爬行、增生、分化、貼附等。其中化學刺激的方式主要是以可溶性因子以及細胞與基材接觸進而活化細胞表面受體的方式來調控細胞,而物理刺激則是以細胞外基質的硬度、形貌、形狀等來做為調控細胞行為的因子。在硬度的部分,有研究指出當幹細胞被培養於不同硬度的基材上時,幹細胞會相對應於基材硬度而分化成不同的細胞,例如當幹細胞被培養於0.1-1 kPa的基材上時會分化成神經細胞,在8-19 kPa的基材上則分化成肌肉細胞,在25-40 kPa則是分化成骨細胞。然而在近期的研究發現,在製備不同硬度的基材同時也會造成基材表面孔洞大小不一的情形,並有研究更進一步去驗證細胞的行為是由基材表面的孔洞大小去調控而非基材硬度。
本研究的主要目的是利用丙烯酰胺(40%)及雙丙烯酰胺(2%)以同一比例混合再藉由波長254 nm的紫外光照射不同的時間來製備出具有不同硬度而孔洞大小上沒有顯著差異的聚丙烯酰胺水膠(35秒: 0.5 kPa,8分鐘:20 kPa),再將脂肪誘導幹細胞(ADSCs)培養於水膠及玻片上去更精確的探討基材硬度對於細胞行為的影響。
由WST1細胞增殖實驗可以發現,基材硬度對於ADSCs的增生速率並沒有顯著的影響,但是細胞在軟基材上的增生速率相對於硬基材來說還是稍微低了些。雖然基材硬度對於細胞增生速率沒有顯著影響,但在傷口修復的實驗結果中發現,傷口修復的速率與基材的硬度成正比,這代表細胞培養於硬基材時細胞爬行到需要修復的位置所需的時間相對比較短。
細胞分化染色的結果顯示,ADSCs培養於脂肪誘導的藥品裡在0.5 kPa
片及20 kPa的基材上茜素紅的染色最為明顯。這個結果顯示幹細胞會藉由感受細胞基質的硬度再分化成相對應的細胞型態。
免疫螢光染色的結果發現,細胞培養於硬度較高的基材上時細胞粘著斑(focal adhesion)和纖維應力(stress fiber)的表現量都會比軟基材來的高,同時,細胞的貼附面積也比軟基材還要大。
在本實驗中利用調整紫外光照射時間作為調控基材軟硬進而控制基材孔洞大小的方法可以更準確地探討基材硬度對於細胞行為的影響,結果說明會對細胞修復,貼附面積,及分化結果造成影響的是基材的硬度而不是基材的孔洞大小。
英文摘要 Studies had showed that extracellular matrix (ECM) would regulate cells behaviors, like proliferation, differentiation, migration, and adhesion through the biochemical and biophysical cues. The biochemical induction was mainly based on the soluble factors and the activation of cell surface receptor by the cell-matrix interaction, however, the biophysical induction was by the stiffness, topography, and pattern to regulate cells behaviors. Researches had pointed out that stem cells cultured on the specific stiffness substrate would differentiate into the specific lineages cells, for example, human mesenchymal stem cells would differentiate into neurons, myocytes, and osteocytes when cultured on the stiffness 0.1-1 kPa, 8-17 kPa, and 25-40 kPa, respectively. However, the substrate with different stiffness usually had different pore size. This study intended to validate the cells behaviors was regulated by the substrate pore size instead of pure stiffness. The gel with different stiffness but had similar porosity was prepared to test the cell behavior.
This study used the same ratio of acrylamide (40%) and bis-acrylamide (2%) but with different ultraviolet light (254nm) irradiated time to fabricate the polyacrylamide (PAA) gel with different stiffness (35s: 0.5 kPa;8min: 20 kPa) and identical pore size. Then cultured the adipose-derived stem cells (ADSCs) on the PAA gel and glass coverslip to investigate how the substrate stiffness influence on the ADSCs behaviors.
The cell proliferation result from WST1-assay by culturing ADSCs on the different stiffness substrate showed no significant difference in proliferation rate between two substrate; however, the proliferation rate was slight higher in the stiff group. However, the wound healing assay showed the speed of cell migration on stiff substrate was faster than that in soft substrate.
Adipogenic differentiation by Oil Red O staining was positive in ADSCs cultured on the 0.5 kPa PAA gel with adipogenic induction medium; however, osteogenic differentiation by Alizarin Red staining were positive in ADSCs cultured on the both 20 kPa PAA gel and glass coverslip with osteogenic induction medium. Immunofluorescence images showed the formation of focal adhesion and stress fiber; and the spreading area of ADSCs were proportional to the substrate stiffness. It means ADSCs differentiation and adhesion would direct by the substrate stiffness.
In this study, PAA gel with different stiffness and identical pore size was fabricated and this structure could be used to differentiate the influence of stiffness on stem cells behaviors by either pure stiffness effect or porosity. The result of this study showed differentiation, proliferation, and spreading area of ADSCs were regulated by the substrate stiffness not pore size.
論文目次 中文摘要 I
Abstract III
誌謝 V
Table of Contents VI
List of Tables VII
List of Figures VIII
Chapter 1: Introduction 1
1.1 Stem cells classification and repair potential 1
1.2 Unique stem cell niche 2
1.3 Influence of stem cell niche on stem cell behaviors 3
1.3.1 Influence of biochemical cues on stem cells differentiation 3
1.3.2 Influence of biophysical and biochemical cues on stem cells differentiation 4
1.4 Study aims and purposes 12
Chapter 2: Materials and Methods 13
2.1 Experiment flow chart 13
2.2 Reagents and instruments 13
2.3 Polyacrylamide gel fabrication 15
2.3.1 Glass coverslip treatment 15
2.3.2 PAA gel fabrication 16
2.3.3 Coating ECM 16
2.4 PAA gel mechanical property characterize 18
2.5 PAA gel microstructure characterize 18
2.6 Adipogenic and osteogenic induction medium formulation 19
2.7 Adipose-derived stem cells isolation 19
2.8 Cells culture 20
2.9 Cells differentiation assay 20
2.10 Cells proliferation assay 21
2.11 Cells migration assay 22
2.12 Cells adhesion assay 23
Chapter 3: Results and Discussion 24
3.1 Mechanical properties of PAA gel 24
3.2 Effect of substrate stiffness on ADSCs proliferation 26
3.3 Effect of substrate stiffness on ADSCs differentiation 28
3.4 Effect of substrate stiffness on ADSCs adhesion 34
3.5 Effect of substrate stiffness on ADSCs migration 38
Chapter 4: Conclusions 41
Chapter 5: Limitations and Future works 42
References 43
參考文獻 1. Watt, F.M. and R.R. Driskell, The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B-Biological Sciences, 2010. 365(1537): p. 155-163.
2. Osakada, F., H. Ikeda, M. Mandai, T. Wataya, K. Watanabe, N. Yoshimura, A. Akaike, Y. Sasai, and M. Takahashi, Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol, 2008. 26(2): p. 215-224.
3. Higuchi, A., Q.D. Ling, Y.A. Ko, Y. Chang, and A. Umezawa, Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, 2011. 111(5): p. 3021-3035.
4. Higuchi, A., Q.D. Ling, S.T. Hsu, and A. Umezawa, Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev, 2012. 112(8): p. 4507-4540.
5. Thomson, J.A., J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, and J.M. Jones, Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-1147.
6. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-872.
7. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-317.
8. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
9. Belmonte, J.C.I., J. Ellis, K. Hochedlinger, and S. Yamanaka, VIEWPOINT Induced pluripotent stem cells and reprogramming: seeing the science through the hype. Nature Reviews Genetics, 2009. 10(12): p. 878-880.
10. Rodriguez-Piza, I., Y. Richaud-Patin, R. Vassena, F. Gonzalez, M.J. Barrero, A. Veiga, A. Raya, and J.C. Izpisua Belmonte, Reprogramming of human fibroblasts to induced pluripotent stem cells under xeno-free conditions. Stem Cells, 2010. 28(1): p. 36-44.
11. Abraham, S., N. Eroshenko, and R.R. Rao, Role of bioinspired polymers in determination of pluripotent stem cell fate. Regen Med, 2009. 4(4): p. 561-578.
12. Witkowska-Zimny, M., K. Walenko, A.E. Walkiewicz, Z. Pojda, J. Przybylski, and M. Lewandowska-Szumiel, Effect of substrate stiffness on differentiation of umbilical cord stem cells. Acta Biochim Pol, 2012. 59(2): p. 261-264.
13. Wu, C.H., F.K. Lee, S. Suresh Kumar, Q.D. Ling, Y. Chang, Y. Chang, H.C. Wang, H. Chen, D.C. Chen, S.T. Hsu, and A. Higuchi, The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, 2012. 33(33): p. 8228-8239.
14. Higuchi, A., P.Y. Shen, J.K. Zhao, C.W. Chen, Q.D. Ling, H. Chen, H.C. Wang, J.T. Bing, and S.T. Hsu, Osteoblast differentiation of amniotic fluid-derived stem cells irradiated with visible light. Tissue Eng Part A, 2011. 17(21-22): p. 2593-2602.
15. Huebsch, N., P.R. Arany, A.S. Mao, D. Shvartsman, O.A. Ali, S.A. Bencherif, J. Rivera-Feliciano, and D.J. Mooney, Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater, 2010. 9(6): p. 518-526.
16. Benoit, D.S., M.P. Schwartz, A.R. Durney, and K.S. Anseth, Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells. Nat Mater, 2008. 7(10): p. 816-823.
17. Zemel, A., F. Rehfeldt, A.E. Brown, D.E. Discher, and S.A. Safran, Optimal matrix rigidity for stress fiber polarization in stem cells. Nat Phys, 2010. 6(6): p. 468-473.
18. Trappmann, B., J.E. Gautrot, J.T. Connelly, D.G. Strange, Y. Li, M.L. Oyen, M.A. Cohen Stuart, H. Boehm, B. Li, V. Vogel, J.P. Spatz, F.M. Watt, and W.T. Huck, Extracellular-matrix tethering regulates stem-cell fate. Nat Mater, 2012. 11(7): p. 642-649.
19. Bonab, M.M., K. Alimoghaddam, F. Talebian, S.H. Ghaffari, A. Ghavamzadeh, and B. Nikbin, Aging of mesenchymal stem cell in vitro. BMC Cell Biol, 2006. 7: p. 14.
20. Madeira, A., C.L. da Silva, F. dos Santos, E. Camafeita, J.M. Cabral, and I. Sa-Correia, Human mesenchymal stem cell expression program upon extended ex-vivo cultivation, as revealed by 2-DE-based quantitative proteomics. PLoS One, 2012. 7(8): p. e43523.
21. Zhao, Y., S.D. Waldman, and L.E. Flynn, The effect of serial passaging on the proliferation and differentiation of bovine adipose-derived stem cells. Cells Tissues Organs, 2012. 195(5): p. 414-427.
22. Gruber, H.E., S. Somayaji, F. Riley, G.L. Hoelscher, H.J. Norton, J. Ingram, and E.N. Hanley, Jr., Human adipose-derived mesenchymal stem cells: serial passaging, doubling time and cell senescence. Biotech Histochem, 2012. 87(4): p. 303-311.
23. Aust, L., B. Devlin, S.J. Foster, Y.D.C. Halvorsen, K. Hicok, T. du Laney, A. Sen, G.D. Willingmyre, and J.M. Gimble, Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy, 2004. 6(1): p. 7-14.
24. Strem, B.M., K.C. Hicok, M. Zhu, I. Wulur, Z. Alfonso, R.E. Schreiber, J.K. Fraser, and M.H. Hedrick, Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med, 2005. 54(3): p. 132-141.
25. Li, Z., Y. Gong, S. Sun, Y. Du, D. Lu, X. Liu, and M. Long, Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells. Biomaterials, 2013. 34(31): p. 7616-7625.
26. Schofield, R., The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 1978. 4(1-2): p. 7-25.
27. Murry, C.E. and G. Keller, Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 2008. 132(4): p. 661-680.
28. Lee, K., E.A. Silva, and D.J. Mooney, Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface, 2011. 8(55): p. 153-170.
29. Reilly, G.C. and A.J. Engler, Intrinsic extracellular matrix properties regulate stem cell differentiation. J Biomech, 2010. 43(1): p. 55-62.
30. Guo, W.H., M.T. Frey, N.A. Burnham, and Y.L. Wang, Substrate rigidity regulates the formation and maintenance of tissues. Biophys J, 2006. 90(6): p. 2213-2220.
31. Lo, C.M., H.B. Wang, M. Dembo, and Y.L. Wang, Cell movement is guided by the rigidity of the substrate. Biophys J, 2000. 79(1): p. 144-152.
32. Yeung, T., P.C. Georges, L.A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, and P.A. Janmey, Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton, 2005. 60(1): p. 24-34.
33. Engler, A.J., S. Sen, H.L. Sweeney, and D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689.
34. Mei, Y., K. Saha, S.R. Bogatyrev, J. Yang, A.L. Hook, Z.I. Kalcioglu, S.W. Cho, M. Mitalipova, N. Pyzocha, F. Rojas, K.J. Van Vliet, M.C. Davies, M.R. Alexander, R. Langer, R. Jaenisch, and D.G. Anderson, Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater, 2010. 9(9): p. 768-778.
35. Banerjee, A., M. Arha, S. Choudhary, R.S. Ashton, S.R. Bhatia, D.V. Schaffer, and R.S. Kane, The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials, 2009. 30(27): p. 4695-4699.
36. Winer, J.P., P.A. Janmey, M.E. McCormick, and M. Funaki, Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A, 2009. 15(1): p. 147-154.
37. Chowdhury, F., S. Na, D. Li, Y.C. Poh, T.S. Tanaka, F. Wang, and N. Wang, Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater, 2010. 9(1): p. 82-88.
38. Lee, S., J. Kim, T.J. Park, Y. Shin, S.Y. Lee, Y.M. Han, S. Kang, and H.S. Park, The effects of the physical properties of culture substrates on the growth and differentiation of human embryonic stem cells. Biomaterials, 2011. 32(34): p. 8816-8829.
39. Robert, D., D. Fayol, C. Le Visage, G. Frasca, S. Brule, C. Menager, F. Gazeau, D. Letourneur, and C. Wilhelm, Magnetic micro-manipulations to probe the local physical properties of porous scaffolds and to confine stem cells. Biomaterials, 2010. 31(7): p. 1586-1595.
40. Li, L., A.E. Davidovich, J.M. Schloss, U. Chippada, R.R. Schloss, N.A. Langrana, and M.L. Yarmush, Neural lineage differentiation of embryonic stem cells within alginate microbeads. Biomaterials, 2011. 32(20): p. 4489-4497.
41. Zhao, W., X.W. Li, X.Y. Liu, N. Zhang, and X.J. Wen, Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Materials Science & Engineering C-Materials for Biological Applications, 2014. 40: p. 316-323.
42. Macri-Pellizzeri, L., B. Pelacho, A. Sancho, O. Iglesias-Garcia, A.M. Simon-Yarza, M. Soriano-Navarro, S. Gonzalez-Granero, J.M. Garcia-Verdugo, E.M. De-Juan-Pardo, and F. Prosper, Substrate stiffness and composition specifically direct differentiation of induced pluripotent stem cells. Tissue Eng Part A, 2015. 21(9-10): p. 1633-1641.
43. Higuchi, A., Q.D. Ling, Y. Chang, S.T. Hsu, and A. Umezawa, Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev, 2013. 113(5): p. 3297-3328.
44. Shih, Y.R., K.F. Tseng, H.Y. Lai, C.H. Lin, and O.K. Lee, Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res, 2011. 26(4): p. 730-738.
45. Lanniel, M., E. Huq, S. Allen, L. Buttery, P.M. Williams, and M.R. Alexander, Substrate induced differentiation of human mesenchymal stem cells on hydrogels with modified surface chemistry and controlled modulus. Soft Matter, 2011. 7(14): p. 6501-6514.
46. Park, J.S., J.S. Chu, A.D. Tsou, R. Diop, Z.Y. Tang, A.J. Wang, and S. Li, The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials, 2011. 32(16): p. 3921-3930.
47. Chowdhury, F., Y.Z. Li, Y.C. Poh, T. Yokohama-Tamaki, N. Wang, and T.S. Tanaka, Soft Substrates Promote Homogeneous Self-Renewal of Embryonic Stem Cells via Downregulating Cell-Matrix Tractions. Plos One, 2010. 5(12).
48. Rowlands, A.S., P.A. George, and J.J. Cooper-White, Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. American Journal of Physiology-Cell Physiology, 2008. 295(4): p. C1037-C1044.
49. Skardal, A., D. Mack, A. Atala, and S. Soker, Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells. Journal of the Mechanical Behavior of Biomedical Materials, 2013. 17: p. 307-316.
50. Nelson, C.M. and C.S. Chen, Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. Febs Letters, 2002. 514(2-3): p. 238-242.
51. Wen, J.H., L.G. Vincent, A. Fuhrmann, Y.S. Choi, K.C. Hribar, H. Taylor-Weiner, S. Chen, and A.J. Engler, Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater, 2014. 13(10): p. 979-987.
52. Huebsch, N., P.R. Arany, A.S. Mao, D. Shvartsman, O.A. Ali, S.A. Bencherif, J. Rivera-Feliciano, and D.J. Mooney, Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nature Materials, 2010. 9(6): p. 518-526.
53. Solon, J., I. Levental, K. Sengupta, P.C. Georges, and P.A. Janmey, Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophysical Journal, 2007. 93(12): p. 4453-4461.
54. Chowdhury, F., S. Na, D. Li, Y.C. Poh, T.S. Tanaka, F. Wang, and N. Wang, Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nature Materials, 2010. 9(1): p. 82-88.
55. McBeath, R., D.M. Pirone, C.M. Nelson, K. Bhadriraju, and C.S. Chen, Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 2004. 6(4): p. 483-495.
56. Katsumi, A., A.W. Orr, E. Tzima, and M.A. Schwartz, Integrins in mechanotransduction. J Biol Chem, 2004. 279(13): p. 12001-12004.
57. Oakes, P.W., D.C. Patel, N.A. Morin, D.P. Zitterbart, B. Fabry, J.S. Reichner, and J.X. Tang, Neutrophil morphology and migration are affected by substrate elasticity. Blood, 2009. 114(7): p. 1387-1395.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw