進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0607201218381700
論文名稱(中文) CapG於肺癌移行/侵襲中所扮演的角色
論文名稱(英文) The role of CapG in lung cancer migration/ invasion
校院名稱 成功大學
系所名稱(中) 臨床醫學研究所
系所名稱(英) Institute of Clinical Medicine
學年度 100
學期 2
出版年 101
研究生(中文) 黃淑翎
研究生(英文) Shu-Ling Huang
學號 s96991059
學位類別 碩士
語文別 英文
論文頁數 51頁
口試委員 指導教授-洪澤民
召集委員-陳玉玲
口試委員-許耿福
口試委員-林建中
中文關鍵字 CapG  LCRMP-1  Vimentin  肺癌 
英文關鍵字 CapG  LCRMP-1  Vimentin  Lung cancer 
學科別分類
中文摘要 肺癌在癌症發生率及致死率上都高居第一位,並且多數病人的死因是由於癌細胞轉移所造成,因此研究癌細胞的轉移機制是目前相當重要的課題。CapG屬於gelsolin家族且具有調節肌動蛋白之功能。CapG可藉由與肌動蛋白絲的結合進而調節肌動蛋白細胞骨架之活動性,並參與細胞傳遞、受體媒介的胞膜變形運動、胞吞及細胞移行等作用。目前已有研究指出CapG在較惡性的癌細胞株中有過度表現的情形。而我們從臨床檢體中發現,CapG確實在肺癌組織中有大量表現的情形。此外,也發現在侵襲能力較強的肺腺癌細胞株CL1-5細胞株中,CapG有高度表現的情形;相對的,在侵襲能力較差的肺腺癌細胞株CL1-0中則表現量較低。當我們在侵襲能力較低的癌細胞株CL1-0中大量表現CapG時,可以有效增加癌細胞的侵襲能力;相反的,當我們在侵襲能力較高的肺癌細胞株CL1-5中降低CapG的表現時,則可以有效地降低肺癌細胞的侵襲能力。因此我們認為CapG可能在肺癌細胞移行及侵襲能力調控上扮演重要角色。於是,我們進一步去探討CapG在肺癌細胞轉移過程中所參與調控的機制為何。從實驗結果中我們發現了兩個會與CapG相互作用的蛋白質,分別是LCRMP-1和vimentin。我們利用免疫沉澱法證實CapG與LCRMP-1的交互作用位點是在LCRMP-1的N端區域,並且CapG與LCRMP-1的相互作用能有效增加腫瘤細胞的移行及侵襲能力。此外,我們也發現CapG會藉由與vimentin的磷酸化位點Ser38進行相互作用,並且此現象會表現在細胞的片層偽足(lamellipodia)區域上。總結以上的結果,我們認為CapG或許可以做為一個診斷、預防及治療肺癌的重要指標。
英文摘要 Lung cancer is the most common cancer in worldwide and causes the patient death by the development of metastasis. Thus, it is an emergency to find out the appropriate biomarkers for early diagnosis and potential candidates for therapeutic applications. Here we focus on the CapG protein, a member of gelsolin-related actin-binding protein, which plays a crucial role in the organization of actin filaments. Recent studies have shown that CapG expression is up-regulated in highly invasive tumor cells. In this study, we found that the expression of CapG protein was correlated with distant metastasis in patients with lung cancer. Moreover, the expression of CapG was higher in highly invasive lung adenocarcinoma cancer cell line CL1-5 than lower invasive lung adenocarcinoma cancer cell line CL1-0. Based on these findings, we suggested that CapG may involve in lung cancer cell motility. We further demonstrated that overexpression of CapG in CL1-0 cells increased cell invasive ability and knockdown of endogenous CapG expression in highly invasive CL1-5 cells reduced cell invasiveness. Moreover, we found that the associated protein of CapG was long isoform of collapsin response mediator protein-1 (LCRMP-1) and vimentin. Then, we identified that the N-terminal region (amino acid residues 72-127) of LCRMP-1 was the major CapG-binding site and the interaction of CapG with LCRMP-1 enhanced lung cancer cell mobility. On the other hand, we found that CapG interacted with phosphorylated vimentin at Ser38 and located in lamellipodia. These results indicate that CapG protein is tumor metastatic promoter and a potential lung cancer marker for lung cancer diagnosis, prevention, and treatment.
論文目次 Abstract in Chinese I
Abstract in English II
Abbreviation VIII
Introduction 1
Lung cancer 1
Cancer metastasis 2
The actin filaments and cell motility 2
The biological roles of gelsolin-like capping protein (CapG) 4
The association between CapG and cancer 5
The biological roles of collapsin response mediator proteins (CRMPs) 5
The new member of metastasis field: collapsin response mediator proteins-1 (CRMP-1) 6
Vimentin 7
Rationale and Specific Aims 9
Materials andMethods 10
Reagents and antibodies 10
Plasmid constructs 10
Cell culture, infection and transfection 10
Immunohistochemical staining (IHC) 11
Immunoprecipitation and immunoblotting 12
Immunofluorescent staining 12
Migration and invasion assays 13
Statistical analysis 13
Results 15
1. Correlation of CapG expression and clinic pathology in lung adenocarcinoma. 15
2. The CapG expression is correlated with cancer cell invasive ability. 15
3. CapG interacts with an invasive/metastatic promoter, LCRMP-1. 16
4. CapG interacts with the N-terminal region of LCRMP-1. 17
5. LCRMP-1 interacts with CapG via the aa. 72-127, and the interaction between CapG and LCRMP-1 can affect motility. 18
6. CapG also interacts with phospho-vimentin (Ser38) 18
Discussion 20
References 23
Figures 34
Figure 1. Immunohistochemical staining for CapG in lung tissues. 34
Figure 2. CapG was overexpressed in highly invasive lung cancer cell lines. 35
Figure 3. Expression of CapG was positively correlated with lung cancer cell invasive ability. 36
Figure 4. The interaction of CapG with LCRMP-1 was stronger than CRMP-1. 39
Figure 5. CapG interacts with the N-terminal region of LCRMP1. 40
Figure 6. The interaction of CapG with LCRMP-1 enhanced migrated and invasive ability of cancer cells. 42
Figure 7. CapG interacted with phospho-vimentin (Ser38) in lamelopodia. 43
Table 45
Appendix 46
Appendix 1. Antibodies 46
Appendix 2. Reagents 47
Appendix 3.Equipments 49
Curriculum vitae 51
參考文獻 Barberis, L., Pasquali, C., Bertschy-Meier, D., Cuccurullo, A., Costa, C., Ambrogio, C., Vilbois, F., Chiarle, R., Wymann, M., Altruda, F., et al. (2009). Leukocyte transmigration is modulated by chemokine-mediated PI3Kgamma-dependent phosphorylation of vimentin. European journal of immunology 39, 1136-1146.
Byk, T., Ozon, S., and Sobel, A. (1998). The Ulip family phosphoproteins--common and specific properties. European journal of biochemistry / FEBS 254, 14-24.
Cagle, P. T., and Chirieac, L. R. (2012). Advances in treatment of lung cancer with targeted therapy. Archives of pathology & laboratory medicine 136, 504-509.
Chen, J. J., Peck, K., Hong, T. M., Yang, S. C., Sher, Y. P., Shih, J. Y., Wu, R., Cheng, J. L., Roffler, S. R., Wu, C. W., and Yang, P. C. (2001). Global analysis of gene expression in invasion by a lung cancer model. Cancer research 61, 5223-5230.
De Corte, V., Van Impe, K., Bruyneel, E., Boucherie, C., Mareel, M., Vandekerckhove, J., and Gettemans, J. (2004). Increased importin-beta-dependent nuclear import of the actin modulating protein CapG promotes cell invasion. Journal of cell science 117, 5283-5292.
Eckes, B., Colucci-Guyon, E., Smola, H., Nodder, S., Babinet, C., Krieg, T., and Martin, P. (2000). Impaired wound healing in embryonic and adult mice lacking vimentin. Journal of cell science 113 ( Pt 13), 2455-2462.
Eriksson, J. E., He, T., Trejo-Skalli, A. V., Harmala-Brasken, A. S., Hellman, J., Chou, Y. H., and Goldman, R. D. (2004). Specific in vivo phosphorylation sites determine the assembly dynamics of vimentin intermediate filaments. Journal of cell science 117, 919-932.
Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., and Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer 127, 2893-2917.
Fortin, S., Le Mercier, M., Camby, I., Spiegl-Kreinecker, S., Berger, W., Lefranc, F., and Kiss, R. (2010). Galectin-1 is implicated in the protein kinase C epsilon/vimentin-controlled trafficking of integrin-beta1 in glioblastoma cells. Brain Pathol 20, 39-49.
Fukada, M., Watakabe, I., Yuasa-Kawada, J., Kawachi, H., Kuroiwa, A., Matsuda, Y., and Noda, M. (2000). Molecular characterization of CRMP5, a novel member of the collapsin response mediator protein family. The Journal of biological chemistry 275, 37957-37965.
Goto, H., Kosako, H., Tanabe, K., Yanagida, M., Sakurai, M., Amano, M., Kaibuchi, K., and Inagaki, M. (1998). Phosphorylation of vimentin by Rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. The Journal of biological chemistry 273, 11728-11736.
Gu, Y., Hamajima, N., and Ihara, Y. (2000). Neurofibrillary tangle-associated collapsin response mediator protein-2 (CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522. Biochemistry 39, 4267-4275.
Gupta, G. P., and Massague, J. (2006). Cancer metastasis: building a framework. Cell 127, 679-695.
Hamajima, N., Matsuda, K., Sakata, S., Tamaki, N., Sasaki, M., and Nonaka, M. (1996). A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution. Gene 180, 157-163.
Helfand, B. T., Mendez, M. G., Murthy, S. N., Shumaker, D. K., Grin, B., Mahammad, S., Aebi, U., Wedig, T., Wu, Y. I., Hahn, K. M., et al. (2011). Vimentin organization modulates the formation of lamellipodia. Molecular biology of the cell 22, 1274-1289.
Herbst, R. S., Heymach, J. V., and Lippman, S. M. (2008). Lung cancer. The New England journal of medicine 359, 1367-1380.
Hong, S. H., Misek, D. E., Wang, H., Puravs, E., Hinderer, R., Giordano, T. J., Greenson, J. K., Brenner, D. E., Simeone, D. M., Logsdon, C. D., and Hanash, S. M. (2006). Identification of a Specific Vimentin Isoform That Induces an Antibody Response in Pancreatic Cancer. Biomarker insights 1, 175-183.
Hong, T. M., Chen, Y. L., Wu, Y. Y., Yuan, A., Chao, Y. C., Chung, Y. C., Wu, M. H., Yang, S. C., Pan, S. H., Shih, J. Y., et al. (2007). Targeting neuropilin 1 as an antitumor strategy in lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 13, 4759-4768.
Honnorat, J., Byk, T., Kusters, I., Aguera, M., Ricard, D., Rogemond, V., Quach, T., Aunis, D., Sobel, A., Mattei, M. G., et al. (1999). Ulip/CRMP proteins are recognized by autoantibodies in paraneoplastic neurological syndromes. The European journal of neuroscience 11, 4226-4232.
Horiuchi, M., El Far, O., and Betz, H. (2000). Ulip6, a novel unc-33 and dihydropyrimidinase related protein highly expressed in developing rat brain. FEBS letters 480, 283-286.
Hubert, T., Van Impe, K., Vandekerckhove, J., and Gettemans, J. (2009). The actin-capping protein CapG localizes to microtubule-dependent organelles during the cell cycle. Biochemical and biophysical research communications 380, 166-170.
Inatome, R., Tsujimura, T., Hitomi, T., Mitsui, N., Hermann, P., Kuroda, S., Yamamura, H., and Yanagi, S. (2000). Identification of CRAM, a novel unc-33 gene family protein that associates with CRMP3 and protein-tyrosine kinase(s) in the developing rat brain. The Journal of biological chemistry 275, 27291-27302.
Kang, S., Kim, M. J., An, H., Kim, B. G., Choi, Y. P., Kang, K. S., Gao, M. Q., Park, H., Na, H. J., Kim, H. K., et al. (2010). Proteomic molecular portrait of interface zone in breast cancer. Journal of proteome research 9, 5638-5645.
Kochin, V., Imanishi, S. Y., and Eriksson, J. E. (2006). Fast track to a phosphoprotein sketch - MALDI-TOF characterization of TLC-based tryptic phosphopeptide maps at femtomolar detection sensitivity. Proteomics 6, 5676-5682.
Kokkinos, M. I., Wafai, R., Wong, M. K., Newgreen, D. F., Thompson, E. W., and Waltham, M. (2007). Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo. Cells, tissues, organs 185, 191-203.
Korsching, E., Packeisen, J., Liedtke, C., Hungermann, D., Wulfing, P., van Diest, P. J., Brandt, B., Boecker, W., and Buerger, H. (2005). The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? The Journal of pathology 206, 451-457.
Kwiatkowski, D. J. (1999). Functions of gelsolin: motility, signaling, apoptosis, cancer. Current opinion in cell biology 11, 103-108.
Lal, A., Lash, A. E., Altschul, S. F., Velculescu, V., Zhang, L., McLendon, R. E., Marra, M. A., Prange, C., Morin, P. J., Polyak, K., et al. (1999). A public database for gene expression in human cancers. Cancer research 59, 5403-5407.
Lang, S. H., Hyde, C., Reid, I. N., Hitchcock, I. S., Hart, C. A., Bryden, A. A., Villette, J. M., Stower, M. J., and Maitland, N. J. (2002). Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. The Prostate 52, 253-263.
Le Clainche, C., and Carlier, M. F. (2008). Regulation of actin assembly associated with protrusion and adhesion in cell migration. Physiological reviews 88, 489-513.
Leung, T., Ng, Y., Cheong, A., Ng, C. H., Tan, I., Hall, C., and Lim, L. (2002). p80 ROKalpha binding protein is a novel splice variant of CRMP-1 which associates with CRMP-2 and modulates RhoA-induced neuronal morphology. FEBS letters 532, 445-449.
Li, B., Perabekam, S., Liu, G., Yin, M., Song, S., and Larson, A. (2002). Experimental and bioinformatics comparison of gene expression between T cells from TIL of liver cancer and T cells from UniGene. Journal of gastroenterology 37, 275-282.
Li, M., Zhang, B., Sun, B., Wang, X., Ban, X., Sun, T., Liu, Z., and Zhao, X. (2010). A novel function for vimentin: the potential biomarker for predicting melanoma hematogenous metastasis. Journal of experimental & clinical cancer research : CR 29, 109.
Mendez, M. G., Kojima, S., and Goldman, R. D. (2010). Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 24, 1838-1851.
Mishra, V. S., Henske, E. P., Kwiatkowski, D. J., and Southwick, F. S. (1994). The human actin-regulatory protein cap G: gene structure and chromosome location. Genomics 23, 560-565.
Morofuji, N., Ojima, H., Onaya, H., Okusaka, T., Shimada, K., Sakamoto, Y., Esaki, M., Nara, S., Kosuge, T., Asahina, D., et al. (2012). Macrophage-capping protein as a tissue biomarker for prediction of response to gemcitabine treatment and prognosis in cholangiocarcinoma. Journal of proteomics 75, 1577-1589.
Nelson, W. J., and Traub, P. (1983). Proteolysis of vimentin and desmin by the Ca2+-activated proteinase specific for these intermediate filament proteins. Molecular and cellular biology 3, 1146-1156.
Nomura, H., Uzawa, K., Ishigami, T., Kouzu, Y., Koike, H., Ogawara, K., Siiba, M., Bukawa, H., Yokoe, H., Kubosawa, H., and Tanzawa, H. (2008). Clinical significance of gelsolin-like actin-capping protein expression in oral carcinogenesis: an immunohistochemical study of premalignant and malignant lesions of the oral cavity. BMC cancer 8, 39.
Novello, S., and Le Chevalier, T. (2003). Chemotherapy for non-small-cell lung cancer. Part 2: Advanced disease. Oncology (Williston Park) 17, 457-464, 469-471; discussion 471, 478-480, 483-454.
Nurnberg, A., Kitzing, T., and Grosse, R. (2011). Nucleating actin for invasion. Nature reviews Cancer 11, 177-187.
Onoda, K., and Yin, H. L. (1993). gCap39 is phosphorylated. Stimulation by okadaic acid and preferential association with nuclei. The Journal of biological chemistry 268, 4106-4112.
Onoda, K., Yu, F. X., and Yin, H. L. (1993). gCap39 is a nuclear and cytoplasmic protein. Cell motility and the cytoskeleton 26, 227-238.
Pan, S. H., Chao, Y. C., Chen, H. Y., Hung, P. F., Lin, P. Y., Lin, C. W., Chang, Y. L., Wu, C. T., Lee, Y. C., Yang, S. C., et al. (2010). Long form collapsin response mediator protein-1 (LCRMP-1) expression is associated with clinical outcome and lymph node metastasis in non-small cell lung cancer patients. Lung Cancer 67, 93-100.
Pan, S. H., Chao, Y. C., Hung, P. F., Chen, H. Y., Yang, S. C., Chang, Y. L., Wu, C. T., Chang, C. C., Wang, W. L., Chan, W. K., et al. (2011). The ability of LCRMP-1 to promote cancer invasion by enhancing filopodia formation is antagonized by CRMP-1. The Journal of clinical investigation 121, 3189-3205.
Pantaloni, D., Le Clainche, C., and Carlier, M. F. (2001). Mechanism of actin-based motility. Science 292, 1502-1506.
Partheen, K., Levan, K., Osterberg, L., Claesson, I., Fallenius, G., Sundfeldt, K., and Horvath, G. (2008). Four potential biomarkers as prognostic factors in stage III serous ovarian adenocarcinomas. International journal of cancer Journal international du cancer 123, 2130-2137.
Partheen, K., Levan, K., Osterberg, L., Claesson, I., Sundfeldt, K., and Horvath, G. (2009). External validation suggests Integrin beta 3 as prognostic biomarker in serous ovarian adenocarcinomas. BMC cancer 9, 336.
Pellieux, C., Desgeorges, A., Pigeon, C. H., Chambaz, C., Yin, H., Hayoz, D., and Silacci, P. (2003). Cap G, a gelsolin family protein modulating protective effects of unidirectional shear stress. The Journal of biological chemistry 278, 29136-29144.
Pollard, T. D., Blanchoin, L., and Mullins, R. D. (2000). Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annual review of biophysics and biomolecular structure 29, 545-576.
Pollard, T. D., and Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-465.
Pollard, T. D., and Cooper, J. A. (2009). Actin, a central player in cell shape and movement. Science 326, 1208-1212.
Prendergast, G. C., and Ziff, E. B. (1991). Mbh 1: a novel gelsolin/severin-related protein which binds actin in vitro and exhibits nuclear localization in vivo. The EMBO journal 10, 757-766.
Quinn, C. C., Chen, E., Kinjo, T. G., Kelly, G., Bell, A. W., Elliott, R. C., McPherson, P. S., and Hockfield, S. (2003). TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 2815-2823.
Rabinovitz, I., and Simpson, K. (2006). The Actin Cytoskeleton and Metastasis. Cell Adhesion and Cytoskeletal Molecules in Metastasis, 69-90.
Renz, M., Betz, B., Niederacher, D., Bender, H. G., and Langowski, J. (2008). Invasive breast cancer cells exhibit increased mobility of the actin-binding protein CapG. International journal of cancer Journal international du cancer 122, 1476-1482.
Rho, J. H., Roehrl, M. H., and Wang, J. Y. (2009). Glycoproteomic analysis of human lung adenocarcinomas using glycoarrays and tandem mass spectrometry: differential expression and glycosylation patterns of vimentin and fetuin A isoforms. The protein journal 28, 148-160.
Ricard, D., Rogemond, V., Charrier, E., Aguera, M., Bagnard, D., Belin, M. F., Thomasset, N., and Honnorat, J. (2001). Isolation and expression pattern of human Unc-33-like phosphoprotein 6/collapsin response mediator protein 5 (Ulip6/CRMP5): coexistence with Ulip2/CRMP2 in Sema3a- sensitive oligodendrocytes. The Journal of neuroscience : the official journal of the Society for Neuroscience 21, 7203-7214.
Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T., and Horwitz, A. R. (2003). Cell migration: integrating signals from front to back. Science 302, 1704-1709.
Schmandke, A., and Strittmatter, S. M. (2007). ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 13, 454-469.
Shao, F., Zhang, R., Don, L., and Ying, K. (2011). Overexpression of gelsolin-like actin-capping protein is associated with progression of lung adenocarcinoma. The Tohoku journal of experimental medicine 225, 95-101.
Shih, J. Y., Lee, Y. C., Yang, S. C., Hong, T. M., Huang, C. Y., and Yang, P. C. (2003). Collapsin response mediator protein-1: a novel invasion-suppressor gene. Clinical & experimental metastasis 20, 69-76.
Shih, J. Y., Yang, S. C., Hong, T. M., Yuan, A., Chen, J. J., Yu, C. J., Chang, Y. L., Lee, Y. C., Peck, K., Wu, C. W., and Yang, P. C. (2001). Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. Journal of the National Cancer Institute 93, 1392-1400.
Silacci, P., Mazzolai, L., Gauci, C., Stergiopulos, N., Yin, H. L., and Hayoz, D. (2004). Gelsolin superfamily proteins: key regulators of cellular functions. Cellular and molecular life sciences : CMLS 61, 2614-2623.
Sin, W. C., Chen, X. Q., Leung, T., and Lim, L. (1998). RhoA-binding kinase alpha translocation is facilitated by the collapse of the vimentin intermediate filament network. Molecular and cellular biology 18, 6325-6339.
Steeg, P. S. (2001). Collapsin response mediator protein-1: a lung cancer invasion suppressor gene with nerve. Journal of the National Cancer Institute 93, 1364-1365.
Su, K. Y., Chien, W. L., Fu, W. M., Yu, I. S., Huang, H. P., Huang, P. H., Lin, S. R., Shih, J. Y., Lin, Y. L., Hsueh, Y. P., et al. (2007). Mice deficient in collapsin response mediator protein-1 exhibit impaired long-term potentiation and impaired spatial learning and memory. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 2513-2524.
Sun, H. Q., Kwiatkowska, K., Wooten, D. C., and Yin, H. L. (1995). Effects of CapG overexpression on agonist-induced motility and second messenger generation. The Journal of cell biology 129, 147-156.
Sun, S., Schiller, J. H., and Gazdar, A. F. (2007). Lung cancer in never smokers--a different disease. Nature reviews Cancer 7, 778-790.
Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature reviews Cancer 2, 442-454.
Thompson, C. C., Ashcroft, F. J., Patel, S., Saraga, G., Vimalachandran, D., Prime, W., Campbell, F., Dodson, A., Jenkins, R. E., Lemoine, N. R., et al. (2007). Pancreatic cancer cells overexpress gelsolin family-capping proteins, which contribute to their cell motility. Gut 56, 95-106.
Tonack, S., Patel, S., Jalali, M., Nedjadi, T., Jenkins, R. E., Goldring, C., Neoptolemos, J., and Costello, E. (2011). Tetracycline-inducible protein expression in pancreatic cancer cells: effects of CapG overexpression. World journal of gastroenterology : WJG 17, 1947-1960.
Valastyan, S., and Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275-292.
Van Ginkel, P. R., Gee, R. L., Walker, T. M., Hu, D. N., Heizmann, C. W., and Polans, A. S. (1998). The identification and differential expression of calcium-binding proteins associated with ocular melanoma. Biochimica et biophysica acta 1448, 290-297.
Van Impe, K., De Corte, V., Eichinger, L., Bruyneel, E., Mareel, M., Vandekerckhove, J., and Gettemans, J. (2003). The Nucleo-cytoplasmic actin-binding protein CapG lacks a nuclear export sequence present in structurally related proteins. The Journal of biological chemistry 278, 17945-17952.
Van Impe, K., Hubert, T., De Corte, V., Vanloo, B., Boucherie, C., Vandekerckhove, J., and Gettemans, J. (2008). A new role for nuclear transport factor 2 and Ran: nuclear import of CapG. Traffic 9, 695-707.
Wang, L. H., and Strittmatter, S. M. (1996). A family of rat CRMP genes is differentially expressed in the nervous system. The Journal of neuroscience : the official journal of the Society for Neuroscience 16, 6197-6207.
Wang, Y., Rouggly, L., You, M., and Lubet, R. (2012). Animal models of lung cancer characterization and use for chemoprevention research. Progress in molecular biology and translational science 105, 211-226.
Watari, A., Takaki, K., Higashiyama, S., Li, Y., Satomi, Y., Takao, T., Tanemura, A., Yamaguchi, Y., Katayama, I., Shimakage, M., et al. (2006). Suppression of tumorigenicity, but not anchorage independence, of human cancer cells by new candidate tumor suppressor gene CapG. Oncogene 25, 7373-7380.
Witke, W., Li, W., Kwiatkowski, D. J., and Southwick, F. S. (2001). Comparisons of CapG and gelsolin-null macrophages: demonstration of a unique role for CapG in receptor-mediated ruffling, phagocytosis, and vesicle rocketing. The Journal of cell biology 154, 775-784.
Wu, J. H., Tian, X. Y., and Hao, C. Y. (2011). The significance of a group of molecular markers and clinicopathological factors in identifying colorectal liver metastasis. Hepato-gastroenterology 58, 1182-1188.
Xu, S. G., Yan, P. J., and Shao, Z. M. (2010). Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis. Journal of cancer research and clinical oncology 136, 1545-1556.
Yamazaki, D., Kurisu, S., and Takenawa, T. (2005). Regulation of cancer cell motility through actin reorganization. Cancer science 96, 379-386.
Young, C. L., Southwick, F. S., and Weber, A. (1990). Kinetics of the interaction of a 41-kilodalton macrophage capping protein with actin: promotion of nucleation during prolongation of the lag period. Biochemistry 29, 2232-2240.
Yu, F. X., Johnston, P. A., Sudhof, T. C., and Yin, H. L. (1990). gCap39, a calcium ion- and polyphosphoinositide-regulated actin capping protein. Science 250, 1413-1415.
Yu, Z., Kryzer, T. J., Griesmann, G. E., Kim, K., Benarroch, E. E., and Lennon, V. A. (2001). CRMP-5 neuronal autoantibody: marker of lung cancer and thymoma-related autoimmunity. Annals of neurology 49, 146-154.
Zheng, Z., Li, J., He, X., Chen, X., Yu, B., Ji, J., Zhang, J., Wang, T., Gu, Q., Zhu, Z., and Liu, B. (2010). Involvement of RhoGDI2 in the resistance of colon cancer cells to 5-fluorouracil. Hepato-gastroenterology 57, 1106-1112.
Zhu, Q. S., Rosenblatt, K., Huang, K. L., Lahat, G., Brobey, R., Bolshakov, S., Nguyen, T., Ding, Z., Belousov, R., Bill, K., et al. (2011). Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene 30, 457-470.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw