進階搜尋


下載電子全文  
系統識別號 U0026-0607201215203000
論文名稱(中文) 超臨界二氧化碳環境下對套管水泥力學與物化性質之影響
論文名稱(英文) The Study of the Mechanical, Physical and Chemical Properties of API G Well Cement with Additives Exposed to Supercritical CO2 Environment
校院名稱 成功大學
系所名稱(中) 資源工程學系碩博士班
系所名稱(英) Department of Resources Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 江健豪
研究生(英文) Chien-Hao Chiang
電子信箱 n46994061@mail.ncku.edu.tw
學號 n46994061
學位類別 碩士
語文別 中文
論文頁數 129頁
口試委員 指導教授-王建力
口試委員-向性一
口試委員-古志生
口試委員-劉明樓
口試委員-馬正明
中文關鍵字 API G級套管水泥  超臨界二氧化碳  碳酸化 
英文關鍵字 API G well cement  supercritical carbon dioxide  carbonization 
學科別分類
中文摘要 以人為方式將二氧化碳長期封存於地質構造,為目前各界廣為接受的二氧化碳封存技術之一。台灣地區經評估後選定陸上封閉油氣構造為較佳之二氧化碳封存場址。但注入之二氧化碳與地層水反應形成之碳酸(H2CO3),將對井孔的套管水泥產生碳酸化反應。隨時間增加造成水泥材料之力學性質降低,膠結成分破壞,孔隙率與滲透率增加,進而可能造成二氧化碳藉由受碳酸化後無封固能力之套管水泥洩漏。
本研究模擬四種配比之套管水泥於井底環境(70℃、20MPa)兩種二氧化碳封存狀態下(超臨界狀態、溶於地層水狀態),分四個反應時間點(0、7、14、28天),對其力學與物化性質變化進行探討。本研究結果發現添加飛灰、矽粉與重晶石,可使套管水泥於反應期間產生緻密層,以減緩外部碳酸持續往內層侵蝕。API G級水泥+矽粉與重晶石有較佳之力學性質維持,因此有較佳之防止水泥碳酸化而崩解之能力。
英文摘要 The long-term anthropogenic CO2 storage in the geological formations is one of the widely accepted CO2 storage techniques. In Taiwan, the ideal CO2 storage site is assessed to be the closed oil and gas reservoirs. CO2 being injected into the geological formations with groundwater will become the carbonic acid (H2CO3) and it will carbonize the well cement of the wellbore. When the reaction time increases, the mechanical properties of the well cement will generally decrease and the porosity and permeability of the well cement will generally increase. The carbonization is likely to have an adverse effect on the well cement.
This paper attempts to study the well cement with additives in the simulated environment under the supercritical CO2 (70℃, 20MPa) and the storage condition (CO2 with or without saturated brine). The evolutions of the mechanical, physical and chemical properties were studied in four different periods (0, 7, 14, 28 days). This study finds that the well cements with fly ash, silica flour and barite produce dense layer during the reaction. It can resist the continuous erosion inside of the cement by carbonic acid. This study also finds that the mechanical properties of API G well cement with silica flour and barite have higher values than those of other well cements. Therefore, API G well cement with silica flour and barite has the best mechanical capability of resisting carbonization and degradation.
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號表 XIV

第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 4
1-3 研究內容與流程 5

第二章 文獻回顧 7
2-1 二氧化碳經井孔洩漏之研究 7
2-2 套管水泥與添加摻料工程性質介紹 10
2-2-1 套管水泥 10
2-2-2 添加摻料 13
2-3二氧化碳對水泥之碳酸化機制 16
2-4 二氧化碳於井底之封存狀態 18
2-5 模擬水泥於井底環境下之相關試驗 20
2-6 氯離子對反應環境與水泥之影響 26
2-7 二氧化碳對水泥強度與物性之影響 30
2-8 反應深度與時間之關係式建立 36

第三章 試驗材料與方法 39
3-1試體材料 39
3-2試體製成 41
3-3 模擬地層水之設定 44
3-4超臨界二氧化碳養冶設備 46
3-5各項試驗設備與方法 48
3-5-1 X光粉末繞射分析(XRD) 48
3-5-2 微結構與組成成份分析(SEM、EDS) 49
3-5-3 載重試驗 50
3-5-4 超聲波檢測 55
3-5-5 整體孔隙率測定 56

第四章 試驗結果與討論 57
4-1 建立反應深度與時間之關係式 58
4-2 API G級水泥 66
4-3 API G級水泥+飛灰 77
4-4 API G級水泥+矽粉+重晶石 86
4-5 API G級水泥+膨潤土 96
4-6 力學與物理相關性質比較 106
4-7綜合討論 110

第五章 結論與建議 116
5-1結論 116
5-2建議 120

參考文獻 122
參考文獻 [1]范振暉、宣大衡,「以地下封存方式進行二氧化碳減量之可行性探討」,第二屆資源工程研討會論文集,2005。
[2]林振國,「二氧化碳的儲存」,科學發展,第413期,第28~33頁,2007。
[3]林殿順,「台灣二氧化碳地質封存潛能及安全性」,經濟前瞻雜誌,2010。
[4]李小春、小出仁、大隅多加志,「二氧化碳地中隔離技術及其岩石力學問題」,岩石力學與工程學報,22(6),2003。
[5]李冠穎,「二氧化碳環境下對油井水泥物理性質及化學性質之影響」,國立成功大學資源工程研究所碩士論文,2011。
[6]楊昀叡,「二氧化碳環境下纖維摻料對套管水泥性質之研究」,國立成功大學資源工程研究所碩士論文,2011。
[7]林炳炎,「飛灰用在混凝土中」,現代營建雜誌社,1991。
[8]詹益謙等人,「鑽井工程」,中國石油學會,1973。
[9]陳金土、邱金水等人,「鑽採工程材料手冊:第八篇─套管與下水泥工程」,中油股份有限公司台灣油礦探勘總處,1987。
[10]張元曦,「儲氣田氣井套管水泥之應力分析」,國立成功大學資源工程研究所碩士論文,2005。
[11]賴禹村,「硫酸鈉溶液環境下飛灰水泥基本力學性質之研究」,國立成功大學資源工程研究所碩士論文,2011。
[12]American Petroleum Institute(API), Recommended Practice for Testing Well Cements. API Recommended Practice 10B. Washington DC , 1985.
[13]API, Background Report,“Summary of Carbon Dioxide Enhanced Oil Recovery(CO2 EOR) Injection Well Technology,”2007.
[14]Bruckdorfer, R. A., “Carbon Dioxide Corrosion in Oilwell Cement,” SPE 15176, 1986.
[15]Barlet-Gouédard, V., Rimmelé, G., Goffe, B., Porcherie, O., “Mitigation strategies for the risk of CO2 migration through wellbores,” SPE 98924, 2006.
[16]Barlet-Gouédard, V., Rimmelé, G., Goffe, B., Porcherie, O.,“Well Technologies for CO2 Geological Storage: CO2-Resistant Cement,” Oil and Gas Science and Technology, 62(3), 325-334, 2007.
[17]Barlet-Gouédard, V., Rimmelé G., Porcherie, O., Quisel, N., Desroches, J., “A solution against well cement degradation under CO2 geological storage environment, ” International Journal of Greenhouse Gas Control 3, 206-216,2009.
[18]Celia, M. A., Bachu, S., Nordbotten, J. M., Gasda, S.E., Dahle, H.K., “Quantitative estimation of CO2 leakage from geological storage: Analytical models, numerical models and data needs,”presented at 7th International Conference on Greenhouse Gas Control Technologies, paper 228,2004.
[19]Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, USA:IPCC, 2007.
[20]Carey, J.W., Wigand, M., Chipera, S., Wolde-Gabriel, G., Pawar, R., Lichtner, P.,Wehner, S., Raines, M., Guthrie Jr., G.D.,“Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit,”International Journal of Greenhouse Gas Control 1, 75-85,2007.
[21]Carey, J.W., Svec, R., Grigg, R., Zhang, J., Crow, W., “Experimental investigation of wellbore integrity and CO2–brine flow along the casing–cement microannulus,” International Journal of Greenhouse Gas Control 4, 272-282,2010.
[22]Duan, Z., Sun, R., “An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, ” Chemical Geology, 193(3-4), 257-271, 2003.
[23]Duguid, A., Radonjic, M., Scherer, G.W., “Degradation of well cements exposed to carbonated Brine, ” Fourth Annual Conference on Carbon Capture and Sequestration Doe/Netl, 2005.
[24]Duguid, A., Scherer, G.W., “Degradation of oilwell cement due to exposure to carbonated brine, ” International Journal of Greenhouse Gas Control 4, 546-560, 2010.
[25]Garnier, A., Laudet, J.B., Neuville, N., Leguen, Y., Fourmaintraux, D., Rafai, N., Burlion, N., Shao, J.F.,“CO2-induced changes in oilwell cements under downhole conditions:first experimental results,” SPE 134473, 2010.
[26]Gislason, S. R.,“Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project, ”International Journal of Greenhouse Gas Control 4, 537-545, 2010.
[27]Hossain, M.M., Amro, M.M., “Drilling and cmpletion callenges and remedies of CO2 injected wells with emphasis to mitigate well integrity issues, ” SPE 133830, 2010.
[28]IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge, United Kingdom and New York, USA:IPCC, 2005.
[29]Jones, R.,“Non-destructive Testing of Concrete,”Cambridge University Press, London, 1962.
[30]Kropp, J., “Relations between transport characteristics and durability,” Performance Criteria for Concrete Durability, 97–137,1995.
[31]Kutchko, B.G., Strazisar, B.R., Dzombak, D.A., Lowry, G.V., Thaulow, N.,“Degradation of well cement by CO2 under geologic sequestration conditions,”Environmental Science and Technology, 41 (13), 4787–4792, 2007.
[32]Kutchko, B.G., Strazisar, B.R., Lowry, G.V., Dzombak, D.A., Thaulow, N.,“Rate of CO2 attack on hydrated class H well cement under geologic sequestration conditions,”Environmental Science and Technology, 42 (16), 6237–6242, 2008.
[33]Kutchko, B.G., Strazisar, B.R., Huerta, N., Lowry, G.V., Dzombak, D.A., Thaulow, N.,“CO2 reaction with hydrated class H well cement under geologic sequestration conditions: effects of flyash admixtures,” Environmental Science and Technology, 43 (10), 3947–3952, 2009.
[34]Liteanu, E., Spiers, C.J., Peach, C.J.,“Failure behaviour wellbore cement in the presence of water and supercritical CO2,”Energy Procedia, 1, 3553-3560, 2009.
[35]Liteanu, E., Spiers, C.J.,“Fracture healing and transport properties of wellbore cement in the presence of supercritical CO2,”Chemical Geology, 281, 195–210, 2011.
[36]Mclintock, I.S., “The Elovich Equation in Chemisorption Kinetics,” Nature, 216, 1204-1205, 1967.
[37]Martin, I.,“Evaluating the impact of fractures on the performance of the In Salah CO2 storage site,”International Journal of Greenhouse Gas Control 4, 242-248, 2010.
[38]Nordbotten, J. M., Celia, M. A., Bachu, S., Dahle, H.K., “Semianlytical solution for CO2 leakage through an abandoned well, ” Environmental Science and Technology , 39, 602-611,2005.
[39]Onan, D.D.,“Effects of supercritical carbon dioxide on well cements, ” SPE 12593, 1984.
[40]Rimmelé G., Barlet-Gouedard, V., Porcherie, O., Goffe, B., Brunet, F.,“Heterogeneous porosity distribution in Portland cement exposed to CO2-rich fluids,”Cement and Concrete Research, 1038-1048, 2008.
[41]Span, R., Wagner, W., “A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, ” American Institute of Physics and American Chemical Society, 25(6), 1996.
[42]Spycher, N., Pruess, K., “CO2–H2O mixtures in the geological sequestration of CO2. II. Partitioning in chloride brines at 12-100℃ and up to 600 bar, ”Geochimica et Cosmochimica Acta 69 (13), 3309–3320,2004.
[43]Santra, A., Reddy, B.R., Liang, F., Fitzgerald, R.,“Reaction of CO2 with portland cement at downhole conditions and the role of pozzolanic supplements, ” SPE 121103, 2009.
[44]Thomas, M. D. A., Bamforth, P. B.,“Modelling chloride diffusion in concrete Effect of fly ash and slag,”Cement and Concrete Research 29, 487–495, 1999.
[45]Tarco, J.C., Asghari, K.,“Experimental study of stability and integrity of cement in wellbores used for CO2 storage,”Journal of Canadian Petroleum Technology, 49(10), 37-44, 2010.
[46]Viswanathan, H.S., Pawar, R.J., Stauffer, P.H., Kaszuba, J.P., Carey, J.W., Olsen, S.C.,Keating, G.N., Kavetski, D., Guthrie Jr., G.D., “Development of a hybrid process and system model for the assessment of wellbore leakage at a geologic CO2 sequestration site,”Environmental Science and Technology 42, 7280-7286,2008.
[47]Zahid, U., Lim, Y., Jung, J., Han, C.,“CO2 geological storage: A review on present and future prospects, ”Korean Journal of Chemical Engineering,28(3),674-685,2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-07-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2015-07-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw