系統識別號 U0026-0604202018304200
論文名稱(中文) 操作在K-band切換電感式壓控振盪器及2.4 GHz ISM-band自我振盪混頻器之設計
論文名稱(英文) Designs of Voltage-controlled Oscillator with Switched Inductor Technique in K-band and Self-oscillating Mixer in 2.4 GHz ISM-band
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 顧峻瑜
研究生(英文) Chun-Yu Ku
學號 N26061416
學位類別 碩士
語文別 中文
論文頁數 98頁
口試委員 召集委員-黃世杰
中文關鍵字 壓控振盪器  自我振盪混頻器  切換式電感  蜂巢型電感  射頻接收機前端電路 
英文關鍵字 voltage-controlled oscillator  self-oscillating mixer  switched inductor  honeycomb-shaped inductor  RF receiver front-end 
中文摘要 本論文為設計應用於5G通訊頻帶接收機之子電路設計,其中可以分成兩個部分:第一部分為操作在K-band切換電感式壓控振盪器;第二部分為操作在2.4 GHz ISM-band自我振盪混頻器。此兩個子電路操作電壓皆為1.8 V,且使用TSMC 0.18 μm CMOS製程實現。
在切換電感式壓控振盪器設計中,透過電感式負載變壓器實現切換式電感架構。在電感主線圈外圍以兩對次線圈分別對其上下半部進行耦合,透過二位元的開關將頻率可調範圍切成四個頻帶。在變壓器方面,透過Open-short De-embedding的方法去驗證等效電感值和Q值。在振盪器的量測結果上,有效頻率可調範圍為22.53 ~ 23.84 GHz;相位雜訊在22.57 GHz偏移1 MHz處為-95.86 dBc/Hz;輸出功率皆大於-6.03 dBm;功率消耗為14.3 mW;整體晶片面積包含緩衝放大器及變壓器測試鍵為1.908 mm2。壓控振盪器子電路設計提供訊號源給混頻器以進行接收機第一次降頻到2.4 GHz頻帶。
在自我振盪混頻器的架構上,在雙平衡式混頻器上方堆疊振盪器電路,達到電流再利用的特色。其中,振盪器使用具抑制電磁干擾的蜂巢型電感架構。蜂巢型電感由於磁場場型內聚,且對外來感應磁通量之變化可利用內含的反向繞線概念相互抵消,相對於傳統型電感之電磁耦合串音現象,有較強的抑制效果。在自我振盪混頻器量測結果上,整體功率消耗為26.85 mW;LO訊號調變範圍為2.173 ~ 2.8 GHz;相位雜訊在頻率偏移1 MHz處為-118.45 dBc/Hz;RF訊號範圍為2.44 ~ 2.72 GHz;IF訊號範圍為150 ~ 250 MHz。在IF頻率為200 MHz時,轉移增益為6.62 dB;IP1dB為-23.62 dBm;IIP3為-17.5 dBm;雜訊指數為6.18 dB;LO-RF 隔離度為74.31 dB;LO-IF 隔離度為36.36 dB;RF-IF 隔離度為23.35 dB;整體晶片面積為3.37 mm2。自我振盪混頻器子電路設計整合混頻器與振盪器電路以進行接收機第二次降頻。
英文摘要 The thesis proposes the subcircuit designs of RF receiver front-end circuits applied to 5G communication frequency band, which includes two parts. The first part is about the design of the voltage-controlled oscillator with switched inductor technique in K-band. A self-oscillating mixer in 2.4 GHz ISM-band is described in the second part. All the above-mentioned designs are powered by 1.8 V and fabricated in TSMC 0.18 μm CMOS process.
A switched inductor structure based on inductor-loaded transformer using the magnetic couple of the upper or lower halves of primary coil with two pairs of secondary coils, which are implemented into the voltage-controlled oscillator. The 2-bit switches divide the frequency tuning range into four bands. In terms of transformer, we verify the equivalent inductor and the Q-factor value by open-short de-embedding method. The measured tuning range of VCO is from 22.53 GHz to 23.84 GHz. The measured phase noise at 1 MHz offset from the carrier frequency 22.57 GHz is -95.86 dBc/Hz; the output power is greater than -6.03 dBm. The VCO core dissipates 14.3 mW, the chip size is 1.908 mm2, which includes the buffer amplifier and the transformer testkey.
A self-oscillating mixer (SOM) features current-reuse architecture by stacking the VCO circuit over the double-balanced mixer. A honeycomb-shaped inductor with EMI suppression is implemented into VCO. As compared to the conventional inductors, the honeycomb-shaped inductor has stronger crosstalk suppression effect because of the magnetic field induction cancellation. The measured LO frequency range is from 2.173 to 2.8 GHz, and the phase noise at 1 MHz offset is -118.45 dBc/Hz. The measured RF frequency range is 2.44 to 2.72 GHz, and the IF frequency range is from 150 to 250 MHz. The SOM exhibits a conversion gain of 6.62 dB, IP1dB of -23.62 dBm, IIP3 of -17.5 dBm, and noise figure of 6.18 dB when IF frequency is 200 MHz. The measurement results show LO-RF isolation is 74.31 dB, LO-IF isolation 36.36 dB, and RF-IF isolation 23.35 dB. The circuit consumes 14.3 mW and occupies an area of 1.908 mm2.
論文目次 第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 3
第二章 操作在K-band切換電感式壓控振盪器 4
2.1 射頻振盪器簡介 4
2.1.1 變壓器簡介 14
2.1.2 寬頻射頻壓控振盪器 17
2.2 操作在K-band切換電感式壓控振盪器 24
2.2.1 毫米波振盪器概述 24
2.2.2 變壓器調整機制 25
2.2.3 電路架構概述 30
2.3 模擬結果 32
2.3.1 應用於On wafer量測之De-embedding方法及模擬結果 32
2.3.2 振盪器模擬結果 35
2.4 量測結果與討論 37
2.4.1 量測環境設置 37
2.4.2 應用於On wafer量測之De-embedding方法量測結果 39
2.4.3 振盪器量測結果與討論 40
第三章 具蜂巢型電感之2.4 GHz ISM-band自我振盪混頻器 45
3.1 具抑制電磁干擾特性之蜂巢型電感 45
3.1.1 抑制電磁干擾特性 45
3.1.2 串音現象模擬與分析 47
3.2 混頻器簡介 50
3.2.1 混頻器概述 50
3.2.2 自我振盪混頻器 61
3.3 操作在2.4 GHz ISM-band自我振盪混頻器 64
3.3.1 電路架構概述 64
3.3.2 電路架構分析 65
3.4 模擬結果 71
3.4.1 振盪器模擬結果 71
3.4.2 混頻器模擬結果 72
3.5 量測結果與討論 76
3.5.1 量測環境設置 76
3.5.2 自我振盪混頻器量測結果與討論 81
第四章 結論與未來展望 92
4.1 結論 92
4.2 未來展望 93
參考文獻 94
參考文獻 [1] “Study on Socio-Economic Benefits of 5G Services Provided in mmwave Bands”, https://www.gsma.com/spectrum/wp-content/uploads/2019/10/mmWave-5G-benefits.pdf
[2] H. Holma, A. Toskala, and T. Nakamura, 5G Technology: 3GPP New Radio, WILEY, Dec. 2019.
[3] Z. Zhang, A. Pun, and J. Lau, “Interference issues in silicon RFIC design,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 1998, pp. 119-122.
[4] H. Su, P. You, K. Huang, and T. Huang, “On-chip interference suppression effect of S-Shape inductor VCO,” in Proc. Asia-Pacific Microwave Conf., Dec. 2008, pp. 1-4.
[5] T. Mattsson, “Method of and inductor layout for reduced VCO coupling,” US patent 7 151 430 B2, Dec. 2006.
[6] B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall PTR, 2011.
[7] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” in Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[8] H. C. Luong and J. Yin, Transformer-Based Design Techniques for Oscillators and Frequency Dividers, Springer, 2015.
[9] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[10] A. Jannesari and M. Kamarei, “Comments on “A general theory of phase noise in electrical oscillators”,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2314, Oct. 2007.
[11] L. Lu, Z. Tang, P. Andreani, A. Mazzanti and A. Hajimiri, “Comments on “Comments on “A General Theory of Phase Noise in Electrical Oscillators””,” IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2170-2170, Sep. 2008.
[12] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[13] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
[14] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[15] A. Kral, F. Behbahani and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE Custom Integrated Circuits Conf., Santa Clara, CA, 1998, pp. 555-558.
[16] T. Lu, C. Yu, W. Chen and C. Wu, “Wide tuning range 60 GHz VCO and 40 GHz DCO using single variable inductor,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, pp. 257–267, Feb. 2013.
[17] H. Wu, C. Chou, C. Ku, T. Huang, H. Chuang, T. Chien, and T. Lee, “60-GHz Millimeter-Wave Voltage-Controlled Oscillators Using Transformer-Tuning Technique, ” in Proc. IEEE Asia-Pacific Microw. Conf. (APMC), Kyoto, Japan, 2018, pp. 1124-1126.
[18] Y. Takigawa, H. Ohta, L.Qing, S. Kurachi, N. Itoh, and T. Yoshimasu,“A 92.6% tuning range VCO utilizing simultaneously controlling of transformers and MOS varactors in 0.13 μm CMOS technology,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Boston, MA, 2009, pp. 83-86.
[19] W. Fei, H. Yu, H. Fu, J. Ren and K. S. Yeo, “Design and Analysis of Wide Frequency-Tuning-Range CMOS 60 GHz VCO by Switching Inductor Loaded Transformer,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 3, pp. 699-711, March 2014.
[20] S. Rong and H. C. Luong, “Analysis and design of transformer-based dual-band VCO for software-defined radios,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 3, pp. 449-462, Mar. 2012.
[21] M. Demirkan, S. P. Bruss and R. R. Spencer, “Design of Wide Tuning-Range CMOS VCOs Using Switched Coupled-Inductors,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1156-1163, May 2008.
[22] P. Heydari, “Millimeter-wave frequency generation and synthesis in Silicon,” in Proc. IEEE Custom Integr. Circuits Conf.(CICC), 2018, pp. 1–49.
[23] Y. Hu, T. Siriburanon, and R. B. Staszewski, “A Low-Flicker-Noise 30-GHz Class-F23 Oscillator in 28-nm CMOS Using Implicit Resonance and Explicit Common-Mode Return Path,” IEEE J. Solid-State Circuits, vol. 53, no. 7, pp. 1977–1987, July 2018.
[24] J. Yin and H. C. Luong, “A 57.5–90.1-GHz Magnetically Tuned Multimode CMOS VCO,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1851-1861, Aug. 2013.
[25] E. Lourandakis, On-wafer microwave measurements and de-embedding, Artech house, ch. 4, pp. 97-100, 2016.
[26] T. Lain, K. Chien, and H. Chiou, “An improved Gm-boosting technique for a K-band cascode Colpitts CMOS VCO,” in Proc. IEEE Asia-Pacific Microw. Conf. (APMC), Seoul, Nov. 2013. pp. 685-687.
[27] P. Wang et al., "Design of 24GHz CMOS VCO using armstrong topology with asymmetric transformer," in Proc. IEEE Asia-Pacific Microw. Conf. (APMC), Sendai, Japan, Nov. 2014, pp. 956-958.
[28] Y. Chang and H. Lu, “A K-Band High-Efficiency VCO Using Current Reused Technique,” IEEE Microw. Compon. Lett., vol. 27, no. 12, Dec. 2017
[29] N. Jahan, S. A. Enche Ab Rahim, H. Mosalam, A. Barakat, T. Kaho, and R. K. Pokharel, “22-GHz-Band Oscillator Using Integrated HShape Defected Ground Structure Resonator in 0.18 µm CMOS Technology,” IEEE Microw. Compon. Lett., vol. 28, no. 3, pp. 233-235, Mar. 2018
[30] H. Chang and Y. Chiu, “K-Band CMOS Differential and Quadrature Voltage-Controlled Oscillators for Low Phase-Noise and Low-Power Applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 46-59, Jan. 2012.
[31] S. Guo, P. Gui, T. Liu, T. Zhang, T. Xi, G.Wu, Y. Fan, and M. Morgan, “A Low-Voltage Low-Phase-Noise 25-GHz Two-Tank Transformer-Feedback VCO,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 10, pp. 3162-3173, Oct. 2018.
[32] D. Murphy and H. Darabi, “A 27-GHz Quad-Core CMOS Oscillator With No Mode Ambiguity,” IEEE J. Solid-State Circuits, vol. 53, no. 11, pp. 3208-3216, Nov. 2018.
[33] C. Durand, F. Gianesello, and D. Gloria, “Innovative 8-shaped inductors integrated in an advanced BiCMOS technology,” in Proc. IEEE Topical Meeting Silicon Monolithic Integr. Circuits RF Syst. (SiRF), Phoenix, AZ, 2011, pp.81-84.
[34] 林士棠,具抑制電磁干擾之新型電感結構探討與其應用於射頻壓控振盪器之探討,國立成功大學電機資訊學院電機工程學系碩士論文,中華民國一百零六年七月。
[35] H. Wu, P. Wang, T. Huang and S. Yang, “EMI Suppression of MEMS Honeycomb-Shaped Inductor on Oscillators for Wireless-Powered IC Design,” in Proc. IEEE Wireless Power Transfer Conf. (WPTC), London, U.K., 2019.
[36] T. Huang, S. Yang and S. Lin, “Characterization of a Planar Honeycomb-Based Inductor on Crosstalk/EMI Suppression,” IEEE Trans. Electromagn. Compat., vol. 61, no. 2, pp. 504-511, Apr. 2019.
[37] 張盛富、張嘉展,無線通訊射頻晶片模組-射頻晶片篇(第二版),全華圖書,中華民國一百零四年三月。
[38] M. Sironen, Y. Qian, and T. Itoh, “A subharmonic self-oscillating mixer with integrated antenna for 60-GHz wireless applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 3, pp. 442–450, Mar. 2001.
[39] W. Li, H. Yang, Y. Chiang, J. Tsai, M. Wu and T. Huang, “A 453-μW 53 - 70-GHz Ultra-Low-Power Double-Balanced Source-Driven Mixer Using 90-nm CMOS Technology,” IEEE Trans Microw. Theory Tech., vol. 61, no. 5, pp. 1903-1912, May 2013.
[40] T. Wang, C. Chang, R. Liu, M Tsai, K. Sun, Y. Chang, L. Lu, and H. Wang, “A low-power oscillator mixer in 0.18-µm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 88–95, Jan. 2006.
[41] B. R. Jackson and C. E. Saavedra, “A Dual-Band Self-Oscillating Mixer for C-Band and X-Band Applications,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 318-323, Feb. 2010.
[42] A. Liscidini, A. Mazzanti, R. Tonietto, L. Vandi, P. Andreani, and R. Castello, “Single-stage low-power quadrature RF receiver front-end: The LMV cell,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2832–2841, Dec. 2006.
[43] S. Ho and C. Saavedra, “A low-noise self-oscillating mixer using a balanced VCO load,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 8, pp. 1705–1712, Aug. 2011.
[44] B. Seow, S. Lin, T. Huang and H. Chuang, “Injection Pulling Mitigation in CMOS Voltage-Controlled Oscillator Using A Novel Honeycomb-Shaped Planar Inductor,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 66, no. 1, pp. 6-10, Jan. 2019.
[45] J. Park, C.-H. Lee, B.-S. Kim, J. Laskar, “Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 4372-4380, Dec. 2006.
[46] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sept. 2004.
[47] E. Hegazi, H. Sjoland and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921-1930, Dec. 2001.
  • 同意授權校內瀏覽/列印電子全文服務,於2020-04-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-04-09起公開。

  • 如您有疑問,請聯絡圖書館