進階搜尋


 
系統識別號 U0026-0602201412051600
論文名稱(中文) 電阻抗頻譜法於水泥砂漿材料均質性及損傷程度之評估
論文名稱(英文) EIS for Material Homogeneity and Damage Detection of Cement Mortars
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 102
學期 1
出版年 103
研究生(中文) 劉昱彤
研究生(英文) Yu-Tung Liu
學號 n66001422
學位類別 碩士
語文別 中文
論文頁數 122頁
口試委員 指導教授-侯琮欽
口試委員-黃忠信
口試委員-王雲哲
口試委員-鍾興陽
口試委員-洪崇展
中文關鍵字 電阻抗頻譜法  電阻抗  混凝土  非破壞性檢測 
英文關鍵字 Electrical impedance spectroscopy  impedance  concrete  non-destructive testing  EIS 
學科別分類
中文摘要 電阻抗頻譜法為混凝土非破壞性檢測中較少為人使用之方法,而外國與大陸學者曾利用電阻抗頻譜法檢測混凝土內鋼筋鏽蝕的情況,本論文欲使電阻抗頻譜法在混凝土的檢測上廣為發展,因此設計混凝土基本阻抗頻譜測量與力學損傷評估之試驗,並利用簡單電路模型模擬實驗結果。當試體中加入不同異質物時,會顯著影響混凝土試體之電阻與阻抗頻譜,而異質物之種類、體積、形狀、排列方式與試體養護天數皆是阻抗變化之重要因素,對電流行進的影響越大,阻抗變化的速度也越快。當混凝土試體受到軸壓應力加載後,損傷達到一定程度,由於內部損傷呈現均勻分布,阻抗頻譜在中高頻區域即會產生一明顯的平坦區域,因此吾人可以利用平坦區域檢測混凝土的損傷類行為軸壓應力,目前無法經由平坦區域精準量化試體之損傷程度,只能大略得知損傷類型以及大略損傷程度;而撓曲應力加載試驗則會因為內部損傷集中在試體某些區域,產生阻礙電流的作用,因此會使阻抗頻譜有一明顯之向右偏移,電阻大幅度上升,如具有未受破壞前之阻抗頻譜,即可利用阻抗譜的大幅向右偏移判斷試體曾經受過撓曲應力破壞。模擬混凝土電路模型之過程相當複雜,必須考慮內部異質物之性質、混凝土之性質以及電極本身的特性進行電路模型的設計,如此才有辦法較為準確模擬混凝土之阻抗頻譜。電阻抗頻譜法需要經過更加多樣的研究才能取得較為完整的發展,因此必須有更多後續的研究者進行電阻抗頻譜法之深入探討。
英文摘要 Electrical impedance spectroscopy is a non-destructive testing of concrete methods people use less. The foreign scholars and scholars from mainland China has used the situation within electrical impedance spectroscopy to detect concrete reinforcement corrosion. This paper purports electrical impedance spectroscopy in the detection of a wide concrete development, so the basic design of concrete testing and mechanical testing, and use the impedance spectroscopy measurements to assess the damage, and use a simple circuit model to simulate the experimental results. When adding different heterogeneous material in the specimens, will significantly affect the resistance and impedance spectroscopy of concrete specimens. The types of heterogeneous materials, size, shape, arrangement and number of days the specimens conserving are important factors in the impedance changes, the greater influence on the current travels, the faster changing in impedance. When the concrete specimens subjected to axial compression stress loading, the damage reaches a certain level, showing a uniform distribution due to internal damage, the impedance spectrum in the high frequency region that produces a clear flat area. Instead we can use to detect damage to the flat areas such acts axial compressive stress of concrete. Currently unable to accurately quantify the extent of damage to the specimen through a flat area, only roughly know the type of injury and the extent of damage approximately. The flexural stress load test is because the internal damage concentrated in certain regions of the specimen, being a role of hindering current. Therefore, there is a significant cause of the impedance spectrum shifted to the right, a significant increase in resistance. As before with the impedance spectrum of unspoiled, you can take advantage of a substantial shift to the right to determine the specimen impedance spectroscopy who suffered flexural stress damage. Concrete circuit simulation model is quite complex and must consider the nature of the internal heterogeneity of material, the nature of the concrete and the characteristics of the electrode to designed circuit model. This is the way to more accurately simulate the impedance spectrum of concrete. Electrical impedance spectroscopy studies need to go through a more diverse development in order to obtain a more complete, so there must be more thorough follow-up of researchers to explore the electrical impedance spectroscopy.
論文目次 目錄
目錄 VI
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1研究動機 1
1.2研究目的 1
1.3本文組織與內容 2
第二章 相關理論與文獻回顧 3
2.1 非破壞性檢測之基本概念[2] 3
2.2 混凝土之基本電學性質 5
2.2.1 電阻基礎理論 5
2.2.2 混凝土材料效應 6
2.3 電阻抗頻譜分析在混凝土上之應用 12
2.3.1 阻抗之基本理論 12
2.3.2 電阻抗頻譜分析與等效電路 17
2.3.3 水泥材料之電學測量文獻回顧 22
第三章 試驗方法與步驟 33
3.1試驗規劃 33
3.2試驗材料及設備 33
3.2.1試驗材料 33
3.2.2試驗設備 35
3.3試驗方法及步驟 37
3.3.1標準受測試體製作與測量 37
3.3.2力學試驗後之損傷評估 39
3.3.3程式模擬 40
第四章 試驗結果與討論 42
4.1力學試驗 42
4.2基本試體之交流阻抗測量試驗 43
4.3 電阻抗頻譜法應用於力學試驗後之損傷評估 56
4.4 程式模擬阻抗圖形 79
第五章 結論與建議 88
參考文獻 91
附錄 96

參考文獻 1. 胡融剛, 黃若雙, 杜榮歸和林昌健, 氯離子侵蝕下鋼筋在混凝土中腐蝕行為的EIS研究, 物理化學學報, vol. 19, pp. 46-50, 2003.
2. 混凝土鋼橋一般檢測手冊, 台灣省住宅及都市發展局, 1995.
3. Esbach O. E. and Souders M. , Handbook of Engineering Fundamentals, John Wiley & Sons, New York, 1975.
4. Maxwell C. , Treatise on Elasticity and Magnetism, Vol. 1, Clarendon Press Oxford, 1873.
5. Archie G. E. , The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Transactions of the American Institute of Mining and Metallurgical Engineers, vol. 146, pp.54-62, 1942.
6. Hunkeler F. , The Resistivity of Pore Water Solution – A Decisive Parameter of Rebar Corrosion and Repair Methods, Construction and Building Materials, vol. 10, pp.381-389, 1996.
7. Hammond E. and Robson T. D. , Comparison of Electrical Properties of Various Cements and Concretes, The Engineer, vol. 199, No. 5156, pp.78-80, 1955.
8. Monfore G. E. , The Electrical Resistivity of Concrete, Journal of the PCA Research and Development Laboratories, vol. 10, No. 2, pp.35-48, 1968.
9. Hughes B. P. , Ip A. K. and Brierly R. W. , New Technique for Determining the Electrical Resistivity of Concrete, Magzine of Concrete Research, vol. 37, No. 133, pp. 243-248, 1985.
10. Monfore G. E. and Deno D. , Electrical Resistance Used to Measure Concrete Consolidation, Portland Cement Association, monthly report, 1968.

11. Ethesham S. and Rasheeduzzafar H. , Corrosion Resistance Performance of Fly Ash Blended Cement Concrete, ACI Materials Journal, vol. 91, pp. 264-271, 1994.
12. Berke N. S. , Dallaire M. P. and Hicks M. C. , Plastic Mechanical, Corrosion and Chemical Resistance Properties of Silica Fume (Microsilica) Concretes, Proceedings, Fourth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, SP-132, pp. 1125-1149, 1992.
13. Hope B. B. and Ip A. K. , Corrosion of Steel in Concrete Made with Slag Cement, ACI Material Journal, vol. 84, pp.525-531, 1987.
14. Mobasher B. and Mitchell T. M. , Laboratory Experience with the Rapid Chloride Permeability Test, Permeability of Concrete, pp. 117-140, 1988.
15. Barsoukov E. and Macdonald J. R. , Impedance Spectroscopy: Theory, Experiment, and Applications: John Wiley and Sons, 2005.
16. Christensen B. J. , Coverdale T. , R. A. Olson R. A. , Ford S. J. , Garboczi E. J. , Jennings H. M. and Mason T. O. , Impedance Spectroscopy of Hydrating Cement Based Material: Measurement, Interpretation, and Application, Journal of the American Ceramic Society, vol. 77, pp.2789-2804, 1994.
17. Iijima S. , Nature. 354, 56, 1991.
18. McCarter W. and Brousseau R. , The AC response of hardened cement paste, Cement and Concrete Research, vol. 20, pp. 891-900, 1990.
19. Gu P. , Xie P. , Beaudoin J. J. and Brousseau R. , AC impedance spectroscopy (I): A new equivalent circuit model for hydrated portland cement paste, Cement and Concrete Research, vol. 22, pp. 833-840, 1992.

20. Gu P. , Xie P. , Beaudoin J. J. and Brousseau R. , AC impedance spectroscopy (II): Microstructural characterization of hydrating cement-silica fume systems, Cement and Concrete Research, vol. 23, pp. 157-168, 1993.
21. Gu P. , Xie P. , Fu Y. and Beaudoin J. , AC impedance phenomena in hydrating cement systems: frequency dispersion angle and pore size distribution, Cement and Concrete Research, vol. 24, pp. 86-88, 1994.
22. Gu P. , Xie P. , Fu Y. and Beaudoin J. , AC impedance phenomena in hydrating cement systems: detectability of the high frequency ARC, Cement and Concrete Research, vol. 24, pp. 92-94, 1994.
23. Gu P. , Xie P. , Fu Y. and Beaudoin J. , An AC impedance spectroscopy study of micro-cracking in cement-based composites during compressive loading, Cement and Concrete Research, vol. 23, pp. 675-682, 1993.
24. Chrisp T. , McCarter W. , Starrs G. , Basheer P. and Blewett J. , Depth-related variation in conductivity to study cover-zone concrete during wetting and drying, Cement and Concrete Composites, vol. 24, pp. 415-426, 2002.
25. McCarter W. , Emerson M. and Ezirim H. , Properties of concrete in the cover zone: developments in monitoring techniques, Magazine of Concrete Research, vol. 47, 1995.
26. McCarter W. , Ezirim H. and Emerson M. , Properties of concrete in the cover zone: water penetration sorptivity and ionic ingress, Magazine of Concrete Research, vol. 48, 1996.
27. Kuang F. , Zhang J. , Zou C. , Shi T. , Wang Y. , Zhang S. and Xu H. , Electrochemical Mehods for Corrosion Monitoring: A survey of Recent Patents.
28. Tumidajski P. J. , Electrical Conductivity of Portland Cement Mortars, Cement and Concrete Research, vol. 26, pp. 529-534, 1996.
29. Thu N. , Strength Estimation of Concrete Materials Using AC Impedance Spectroscopy, 2012.
30. Torrents J. M. , Mason T. O. and Garboczi E. J. , Impedance spectra of fiber-reinforced cement-based composites A modeling approach, Cement and Concrete Research, vol. 30, pp. 585-592, 2000.
31. Torrents J. M. , Mason T. O. , Peled A. , Shah S. P. and Garboczi E. J. , Analysis of the impedance spectra of short conductive fiber-reinforced composites, Journal of Materials Science, vol. 36, pp. 4003-4012, 2001.
32. Alva Peled, Torrents J.M. , Shah S.P. and Garboczi E.J. , Electrical Impedance Spectra to Monitor Damage during Tensile Loading of Cemant Composites, ACI Materials Journal, vol.98, pp. 313-341, 2001.
33. McCarter W. J. , The AC impedance response of concrete during early hydration, Journal of Materials Science, vol. 31, pp. 6285-6292, 1996.
34. McCarter W. J. , Starrs G. and Chrisp T. M. , Immittance spectra for Portland cement/fly ash-bases binders duing early hydration, Cement and Concrete Research, vol.29, pp. 377-387, 1999.
35. Ford S. J. , Mason T. O. , Christensen B. J. , Coverdale R. T. , Jennings H. M. and Garboczi E. J. , Electrode configurations and impedance spectra of cement pastes, Journal of Materials Science, vol. 30, pp. 1217-1224, 1995.
36. Ford S. J. , Shane J. D. and Mason T. O. , Assigment of features in impedance spectra od the cement-paste/steel system, Cement and Concrete, vol. 28, pp. 1737-1751, 1998.
37. David A. Whiting and Mohamad A. Nagi, Electrical Resistivity of Concrete -A Literature Review: Portland Cement Association, 2003.

38. Evgenij Barsoukov and J. Ross Macdonald, Impedance Spectroscopy : Theory, Experiment and Application, Second Edition, WILEY-INTERSCIENCE, 2005.
39. 黃鯤鵬, 以交流阻抗分析法量測高方向性氧化鋅奈米柱陣列電性之研究, 2006.
40. 楊昇晃, 微型燃料電池設計、製作與電化學阻抗量測分析, 2005.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-02-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-02-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw